首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration of guanosine 3′,5′-bispyrophosphate (ppGpp) increases in bacteria in response to amino acid or carbon/energy source starvation. An Escherichia coli K12 ΔrelAΔspoT mutant lacking the ability to synthesize ppGpp lost viability at an increased rate during both glucose and seryl-tRNA starvation. Also, the deleterious effect of chloramphenicol on starved wild-type cells could be overcome by inducing expression of RelA from a plasmid carrying the relA gene transcribed from a tac promoter, prior to starvation and chloramphenicol treatment. As demonstrated by two dimensional gel electrophoresis, this induction of the RelA protein resulted in global alterations in gene expression including increased synthesis of some rpoS-dependent proteins. The ΔrelAΔspoT mutant maintained high expression of several ribosomal proteins during starvation and appeared to exhibit significantly decreased translational fidelity, as demonstrated by an unusual heterogeneity in the isoelectric point of several proteins and the failure to express higher molecular weight proteins during starvation. Moreover, both rpoS-dependent and independent genes failed to exhibit increased expression in the mutant. It is suggested that the deleterious effects on the cells of the relA, spoT deletions are not due solely to the inability of these cells to induce the sigma factor σs, but also to deficiencies in translational fidelity and failure to exert classical stringent regulation.  相似文献   

2.
Summary Gene libraries from the magnetotactic bacterium, Aquaspirillum magnetotacticum were constructed in Escherichia coli with cosmids pLAFR3 and c2RB as vectors. Recombinant cosmids able to complement the thr-1, leuB, and proA mutations of the host were identified. The Pro+ recombinant cosmid restored wild-type phenotype in proA and proB but not in the proC mutants of E. coli. The results of restriction endonuclease digestion and Southern hybridization analysis indicate that the relevent leu and pro biosynthetic genes of A. magnetotacticum are not closely linked on the chromosome.  相似文献   

3.
Summary Two new mutants of E. coli K12, strains PT9 and PT32 were isolated, that were defective in proline transport. They had no high affinity proline transport activity, but their cytoplasmic membranes retained proline binding activity with altered sensitivity to inhibition by p-chloromercuribenzoate(pCMB). The lesion was mapped at the putP gene, which is located at min 23 on the revised E. coli genetic map (Bachmann 1983) as a composite gene in the proline utilization gene cluster, putP, putC, and putA, arranged in this order. The putC gene was shown to regulate the synthesis of proline dehydrogenase (putA gene product).Hybrid plasmids carrying the put region (Motojima et al. 1979; Wood et al. 1979) were used to construct the physical map of the put region. The possible location of the putP gene in the DNA segment was determined by subcloning the putP gene, genetic complementation, and recombination analyses using several proline transport mutants.Abbreviations pCMB p-chloromercuribenzoate - DM Davis and Mingioli - Ap ampicillin - NTG N-methyl-N-nitro-N-nitrosoguanidine - EMS ethylmethane sulfonate - Str streptomycin - Tet tetracycline - Ac l-azetidine-2-carboxylic acid - DHP 3, 4-dehydro-d,l-proline - MTT 3-(4,5-dimethyl-2)2,5-diphenyl tetrazolium bromide - Tris tris(hydroxymethyl)aminomethane - EDTA ethylenediamine tetraacetic acid - Kan kanamycin - Spc spectinomycin  相似文献   

4.
5.
Summary Mutations in the cysB and cysE genes of Escherichia coli K12 cause an increase in resistance to the gyrase inhibitor novobiocin but not to coumermycin, acriflavine and rifampicin. This unusual relationship was also observed among spontaneous novobiocin resistant (Novr) mutants: 10% of Novr mutants isolated on rich (LA) plates with novobiocin could not grow on minimal plates, and among those approximately half were cysB or cysE mutants. Further analyses demonstrated that cysB and cysE negative alleles neither interfere with transport of novobiocin nor affect DNA supercoiling.  相似文献   

6.
Summary The nucleotide sequence of the Escherichia coli K12 -methylgalactoside transport operon, mgl, was determined. Primer extension analysis indicated that the synthesis of mRNA initiates at guanine residue 145 of the determined sequence. The operon contains three open reading frames (ORF). The operator proximal ORF, mglB, encodes the galactose binding protein, a periplasmic protein of 332 amino acids including the 23 residue amino-terminal signal peptide. Following a 62 nucleotide spacer, the second ORF, mglA, is capable of encoding a protein of 506 amino acids. The amino-terminal and carboxyl-terminal halves of this protein are homologous to each other and each half contains a putative nucleotide binding site. The third ORF, mglC, is capable of encoding a hydrophobic protein of 336 amino acids which is thought to generate the transmembrane pore. The overall organization of the mglBAC operon and its potential to encode three proteins is similar to that of the ara FGH high affinity transport operon, located approximately 1 min away on the E. coli K12 chromosome.  相似文献   

7.
Summary The genes xy1A and xy1B were cloned together with their promoter region from the chromosome of Klehsiella pneumoniae var. aerogenes 1033 and the DNA sequence (3225 bp) was determined. The gene xy1A encodes the enzyme xylose isomerase (XI or XylA) consisting of 440 amino acids (calculated Mr of 49 793). The gene xy1B encodes the enzyme xylulokinase (XK or Xy1B) with a calculated M, of 51 783 (483 amino acids). The two genes successfully complemented xy1 mutants of Escherichia coli K12, but no gene dosage effect was detected. E. coli wild-type cells which harbored plasmids with the intact xylA Kp 5 upstream region in high copy number (but lacking an active xy1B gene on the plasmids) were phenotypically xylose-negative and xylose isomerase and xylulokinase activities were drastically diminished. Deletion of 5 upstream regions of xy1A on these plasmids and their substitution by a lac promoter resulted in a xylose-positive phenotype. This also resulted in overproduction of plasmid-encoded xylose isomerase and xylulokinase activities in recombinant E. coli cells.  相似文献   

8.
Summary The efficacy of linear DNA as a substrate for general homologous recombination was demonstrated using BamHI-linearized pKLC8.5, a plasmid that carries internal direct repeats flanking the unique BamHI site. An analogous plasmid, pKLC2.31, was used in a parallel and comparative study of intramolecular homologous recombination in circular DNA substrates. When the rec + wild-type strain, AB1157, and its isogenic rec derivatives were transformed with linear pKLC8.5 DNA, intramolecular homologous recombination was independent of recA, recB, recN, recO and exonuclease III (xth-1) functions. Although the recBCsbcA and recBCsbcBC cells were both very recombination proficient, only linear but not circular DNA was used as substrate for intramolecular homologous recombination in the recBCsbcA cells. In both the recBCsbcA and recBCsbcBC genetic backgrounds, the recombination frequencies for linearized pKLC8.5 DNA were 100%. A notable difference between the two strains was that none of the recBCsbcA transformants obtained with circular pKLC8.5 DNA were Tcs recombinants, whereas 11% of the corresponding recBCsbcBC transformants were Tcs recombinants. The sbcB mutation was responsible for the recombination proficiency of the recBCsbcBC cells. Unlike the case in recBCsbcA cells, intramolecular homologous recombination of linear DNA in the recBCsbcBC cells was dependent on recA and recF as well as recN and recO gene functions, but was independent of recJ and reeL gene functions.  相似文献   

9.
Summary The variability of the time interval between successive rounds of chromosome replication was estimated by density-shift experiments, by measuring the conversion of heavy DNA to hybrid density and light DNAs upon transfer of a steady-state culture growing in medium with [13C]glucose and 15NH4Cl to medium with light isotopes. The coefficient of variation (CV%) for the interreplication time of the Escherichia coli K12 chromosome was found to be 17%, i.e. similar to that for interdivision time. The presence of additional copies of oriC in the cell on a high copy number plasmid did not increase the CV of interreplication time. It is concluded that a single rate-limiting event is unlikely to time the initiation of chromosome replication. The regulation of initiation at oriC and the coordination with cell division is discussed.  相似文献   

10.
Evidence of abortive recombination in ruv mutants of Escherichia coli K12   总被引:5,自引:0,他引:5  
Summary Genetic recombination in Escherichia coli was investigated by measuring the effect of mutations in ruv and rec genes on F-prime transfer and mobilization of nonconjugative plasmids. Mutation of ruv was found to reduce the recovery of F-prime transconjugants in crosses with recB recC sbcA strains by about 30-fold and with recB recC sbcB sbcC strains by more than 300-fold. Conjugative plasmids lacking any significant homology with the chromosome were transferred normally to these ruv mutants. Mobilization of the plasmid cloning vectors pHSG415, pBR322, pACYC184 and pUC18 were reduced by 20- to 100-fold in crosses with ruv rec + sbc + strains, depending on the plasmid used. Recombinant plasmids carrying ruv + were transferred efficiently. With both F-prime transfer and F-prime cointegrate mobilization, the effect of ruv was suppressed by inactivating recA. It is proposed that the failure to recover transconjugants in ruv recA +strains is due to abortive recombination and that the ruv genes define activities which function late in recombination to help convert recombination intermediates into viable products.  相似文献   

11.
We have previously reported the isolation of an Escherichia coli K12 mutant that is extremely sensitive to mutagenesis by low doses of ethylating agents. We now show by Southern analysis that the mutation involves a gross deletion covering at least the ogt and fnr genes and that no O6-alkylguanine-DNA-alkyltransferase activity is present in cell-free extracts of an ada::Tn10 derivative of these bacteria. Confirmation that sensitisation to ethylation-induced mutagenesis was attributable to ogt and not to any other loci covered by the deletion was obtained by constructing derivatives. Thus an ogt::kanr disruption mutation was introduced into the parental ogt + bacteria, and the ogt::kanr mutation was then eliminated by cotransduction of ogt + with the closely linked Tet r marker (zcj::Tn10). The (ogt-fnr) deletion or ogt::kanr disruption mutants were highly sensitive to ethyl methanesulphonate-induced mutagenesis, as measured by the induction of forward mutations to l-arabinose resistance (Ara1). Furthermore, the number of Arar mutants increased linearly with dose, unlike the case in ogt + bacteria, which had a threshold dose below which no mutants accumulated. Differences in mutability were even greater with propyl methanesulphonate. Overproduction of the ogt alkyltransferase from a multicopy plasmid reduced ethylmethanesulphonate-induced mutagenesis in the ogt mutant strains and also methylmethanesulphonate mutagenesis in ada bacteria. A sample of AB 1157 obtained from the E. coli K12 genetic stock centre also had a deletion covering the ogt and fnr genes. Since such deletions greatly influence the mutagenic responses to alkylating agents, a survey of the presence of the ogt gene in the E. coli K12 strain being used is advisable.  相似文献   

12.
Summary Strains of Escherichia coli K12 carrying a tolA, tolB, lky or exc mutation located at min 16.5 on the genetic map released periplasmic proteins into the extracellular medium. Wild-type genes defined by these mutations have been cloned from E. coli genomic bank made with plasmid pBR328. Subcloning experiments and complementation studies showed that lky and exc mutations were located either in the previously described tolA and tolB genes or in the newly characterized excC and excD genes. Using minicells, excC and excD gene products were identified as proteins with a molecular mass of 19 and 21 kDa, respectively.  相似文献   

13.
We used anEscherichia coli strain blocked in serine biosynthesis and carrying a partialglyA deletion to isolate strains with altered regulation of theglyA gene. TheglyA deletion results in 25% of the normal serine hydroxymethyltransferase activity. Three classes of mutants with increasedglyA expression were isolated on glycine supplemented plates. One class of mutations increasedglyA expression 10-fold by directly altering the – 35 consensus sequence of theglyA promoter. The two other classes increasedglyA expression about 2- and 6-fold, respectively. The latter two classes of mutations also affected regulation of themetE gene of the folate branch of the methionine pathway, but notmetA in the nonfolate branch of the methionine pathway, or thegcv operon, encoding the glycine cleavage enzyme system. The mutations were mapped to about minute 85.5 on theE. coli chromosome.  相似文献   

14.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

15.
Summary The complete nucleotide sequence of the Salmonella strain LT2 gnd gene for 6-phosphogluconate dehydrogenase was determined. The gene contains 1404 bases and encodes a 468 amino acid polypeptide, which is the same as for Escherichia coli K12. The DNA sequence shows 14.8% difference between the two and the amino acid sequence 3.6% difference. Changes are mostly in the third codon base and most of the amino acid changes are conservative.  相似文献   

16.
17.
18.
19.
20.
The 325-residue outer membrane protein OmpA of Escherichia coli has been proposed to consist of a membrane-embedded moiety (residues 1 to about 170) and a C-terminal periplasmic region. The former is thought to comprise eight transmembrane segments in the form of antiparallel -strands, forming an amphiphilic connected by exposed turns. Several questions concerning this model were addressed. Thus no experimental evidence had been presented for the turns at the inner leaflet of the membrane and it was not known whether or not the periplasmic part of the polypeptide plays a role in the process of membrane incorporation. Oligonucleotides encoding trypsin cleavage sites were inserted at the predicted turn sites of the ompA gene and it was shown that the encoded proteins indeed become accessible to trypsin at the modified sites. Together with previous results, these data also show that the turns on both sides of the membrane do not possess specifically topogenic information. In two cases one of the two expected tryptic fragments was lost and could be detected at low concentration in only one case. Therefore, bilateral proteolytic digestion of outer membranes can cause loss of -strands and does not necessarily produce a reliable picture of protein topology. When ompA genes were constructed coding for proteins ending at residue 228 or 274, the membrane assembly of these proteins was shown to be partially defective with about 20% of the proteins not being assembled. No such defect was observed when, following the introduction of a premature stop codon, a truncated protein was produced ending with residue 171. It is concluded that (1) the proposed -barrel structure is essentially correct and (2) the periplasmic part of OmpA does not play an active role in, but can, when present in mutant form, interfere with membrane assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号