首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The chromosomes of the Atlantic salmon, Salmo salar (2n=58) are, on average, larger than those of the trout, S. trutta (2n=80). If the difference in chromosome size represents a permanent change in chromosome structure as between the two species the expectation is that the size difference between salmon and trout chromosomes will be maintained in the hybrid. If, alternatively, the size difference between salmon and trout chromosomes is genotypically determined the difference will not be maintained in nuclei of hybrid genotype. Measurements of a specific chromosome, S, of the salmon complement and of another, S 1, of the trout complement in nuclei of parent species and of the hybrid show that the difference in size is maintained in hybrid nuclei. It is concluded therefore that the size difference between salmon and trout chromosomes is due to structural change rather than to genotypic control.  相似文献   

2.
F. Pera  B. Rainer 《Chromosoma》1973,42(1):71-86
Cultures of kidney epithelium and fibroblasts of 39 specimens of Microtus agrestis were investigated. In all 77 cultures multipolar mitoses were found. They were studied in living state and after pulse labelling with 3H-thymidine. The ploidy of the multipolar mitoses and of their daughter nuclei was determined by measuring the relative Feulgen-DNA content and by counting the predominantly constitutive heterochromatic sex chromosomes. Constitutive heterochromatin was demonstrated by late replication, retarded separation of the chromatids in anaphase, heteropycnosis and by the Giemsa technique of Arrighi and Hsu (1971). The latter stained also the spindle apparatus of mitoses.—In living cells, transformation of multipolar mitoses into bipolar mitoses was observed. The chromosomes of multipolar mitoses are separated into complete genomes; the daughter nuclei can be haploid, diploid, triploid or tetraploid. The chromosomes of haploid and triploid metaphases were studied with the Giemsa banding technique. The banding pattern shows an exact monosomy and trisomy, respectively, for each chromosome. Haploid nuclei are likely to be viable only in multinucleate cells, whereas triploid cells behave like diploid cells during the S period and the mitosis.Dedicated to Prof. Dr. K. Goerttler on the occasion of his 75th birthday.Supported by the Bundesministerium für Bildung und Wissenschaft of the Federal Republic of Germany.  相似文献   

3.
Following division of HeLa-3T3 heterokaryons, human and mouse chromosomes occupy distinct regions within the resulting hybrid nuclei. This favorable orientation of genomes has allowed us to determine whether histones exchange between chromosomes in vivo. Acrylamide gel electrophoresis of the proteins from HeLa cells labeled with 3H-arginine during S phase showed that the core histones were labeled preferentially, constituting 30% of the total cellular tritium and 50% of the label in a crude nuclear fraction. Autoradiographic analysis of cells formed by fusion of 3H-arginine-labeled HeLa cells and 3T3-4E cells showed that 3H-arginine-labeled proteins did not migrate between nuclei in heterokaryons; hybrid cells formed from such heterokaryons contained nuclei in which 3H proteins occupied a sector within the nucleus; “sectored nuclei” could persist for at least 4 days; and the unequal distribution of 3H proteins did not change during DNA synthesis. Electron microscopic examination of hybrid nuclei failed to reveal a physical partition between human and mouse chromosome sets. Sectored nuclei were also observed in synkaryons derived from 3H-arginine-labeled HeLa and unlabeled HeLa cells, indicating that the unequal distribution of 3H-arginine-labeled proteins in HeLa-3T3 hybrid cells did not result from species-specific binding of proteins and DNA. The persistent unequal distribution of 3H-arginine-labeled proteins within hybrid nuclei in the apparent absence of a barrier between mouse and human chromosomes indicates that histones, the principal 3H-arginine-labeled proteins, do not dissociate from DNA in vivo.  相似文献   

4.
Results are reported on the transfer of single, specific chromosomes carrying kanamycin resistance (KanR) and -glucuronidase (GUS) traits from a transformed donor line of potato (Solanum tuberosum) to a recipient line of the tomato species Lycopersicon peruvianum through microprotoplast fusion. Polyethylene glycol-induced mass fusion between donor potato microprotoplasts containing one or a few chromosomes and normal recipient diploid L. peruvianum protoplasts gave several KanR calli. A high frequency of plants regenerated from KanR calli expressed both KanR and GUS, and contained one or two copies of npt-II and a single copy of gus. Genomic in situ hybridization showed that several microprotoplast hybrid plants had one single potato donor chromosome carrying npt-II and gus genes and the complete chromosome complement of the recipient L. peruvianum (monosomic additions). Several monosomic-addition hybrid plants could be regenerated within the short time of 3 months and they were phenotypically normal, resembling the recipient line. These results suggest that the transfer of single chromosomes is tolerated better than is the transfer of the whole donor genome. The unique advantages of microprotoplast fusion are discussed: these include the direct production of monosomic addition lines for the transfer and introgression of economically important traits in sexually-incongruent species, the construction of chromosome-specific DNA libaries, high-resolution physical mapping and the identification of alien chromosome domains related to gene expression.  相似文献   

5.
Summary Cells of Hyalophacus ocellatus are described which contain either a nuclear figure consisting of a double complement of highly condensed chromosomes arranged in pairs in the anterior half of the cell, or a huge posteriorly-placed nucleus consisting of long granular chromosomes which also show signs of pairing. These nuclear figures are quite unlike interphase nuclei or stages in mitosis and are thought to be stages in euglenoid meiosis.No evidence has been obtained for a sexual fusion of gametes or cells. Previous accounts of sexuality and autogamy in the Euglenineae are historically reviewed and critically discussed relative to the present observations.This paper is dedicated to Professor Dr. E. G. Pringsheim on the occasion of his 80th birthday, with gratitude both for his untiring advice on my research and for his friendship.  相似文献   

6.
Genomic in-situ hybridization (GISH) was used to monitor the behaviour of parental genomes, and the fate of intergenomic chromosome translocations, through meiosis of plants regenerated from asymmetric somatic hybrids between Nicotiana sylvestris and N. plumbaginifolia. Meiotic pairing in the regenerants was exclusively between chromosomes or chromosome segments derived from the same species. Translocation (recombinant) chromosomes contained chromosome segments from both parental species, and were detected at all stages of meiosis. They occasionally paired with respectively homologous segments of N. sylvestris or N. plumbaginifolia chromosomes. Within hybrid nuclei, the meiotic division of N. plumbaginifolia lagged behind that of N. sylvestris. However, normal and recombinant chromosomes were eventually incorporated into dyads and tetrads, and the regenerants were partially pollen fertile. Recombinant chromosomes were transmitted through either male or female gametes, and were detected by GISH in sexual progeny obtained on selfing or backcrossing the regenerants to N. sylvestris. A new recombinant chromosome in one plant of the first backcross generation provided evidence of further chromosome rearrangements occurring at, or following, meiosis in the original regenerants. This study demonstrates the stable incorporation of chromosome segments from one parental genome of an asymmetric somatic hybrid into another, via intergenomic translocation, and reveals their transmission to subsequent sexual progeny.  相似文献   

7.
Summary Two somatic hybrid plants generated from a single fusion event between Lycopersicon esculentum and irradiated L. pennellii protoplasts have been analyzed at the molecular level. Over 30 loci have been analyzed using isozymes and RFLPs. All loci tested on chromosomes 2–10 were heterozygous, while those loci on chromosome 12 were homozygous L. pennellii in both somatic hybrids. In one of the somatic hybrids, 2850, loci on chromosome 1 were also homozygous L. pennellii. The other somatic hybrid, 28F5, was heterozygous at all chromosome 1 loci tested, but exhibited altered stoichiometry of parental bands as compared to the sexual hybrid. Loci on chromosome 2 from both somatic hybrids have altered stoichiometry, with L. pennellii alleles being four times more abundant than expected. Both somatic hybrids contain the L. esculentum chloroplast genome, while only L. pennellii polymorphisms have been detected in the mitochondrial genome.  相似文献   

8.
The protoplasts of tall fescue (Festuca arundinacea Schreb.) were fused with those of Bupleurum scorzonerifolium Willd. The latter were irradiated with UV at an intensity of 380 μW/cm2 for 0 s (combination I), 30 s (combination II), and 60 s (combination III) before fusion. Putative hybrid calli, leaves, and shoots were generated from the fusion products. They were recognized as somatic hybrids by a combined analysis of chromosome numbers, isozyme, RAPD, and 5S rDNA spacer sequence. The hybrid calli with morphogenetic ability and leaves/shoots differentiation had the B. scorzonerifolium phenotype, whether they were derived from symmetric fusion (UV 0 s) or asymmetric fusion (UV 30 s/60 s). Cytological tests revealed that these hybrids contained the complete set (12) of B. scorzonerifolium chromosomes and 0–4 partner tall fescue chromosomes. The tall fescue chromosomes were rapidly eliminated in combinations II and III, but gradually lost in combination I. It was noted that the green leaves and shoots were produced earlier, and the differentiation frequency was higher in combinations II and III than in combination I, which corresponded to the speed of elimination of the tall fescue chromosomes in the hybrids. Therefore, UV irradiation can indirectly promote elimination of tall fescue chromosomes and hybrid differentiation. B. scorzonerifolium can repel partner chromosomes with mechanism that differs from UV.  相似文献   

9.
Summary Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 B S and 6 B L) and a non-related (5 B L) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement — the Rabl orientation — and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary telocentrics, or, as a possible alternative, common repeated sequences of DNA molecules around the centromere region.Dedicated to Professor Dr. Marcus M. Rhoades on his 70th birthday.  相似文献   

10.
Summary Leaf mesophyll protoplasts of the monohaploid potato (Solanum tuberosum L.) clone H7322 were fused with callus protoplasts of nitrate reductase deficient (NR) mutants Cnx 20 and NA 36 of Nicotiana plumbaginifolia. Somatic hybrid lines were selected for nitrate reductase proficiency. All callus lines tested appeared to be stable for the retention of the potato chromosome carrying the compensating NR gene when grown for over 1.5 years in the absence of nitrate. Shoots were regenerated from six different fusion lines of Cnx 20 + H7322 24 months after fusion. Chromosomal analysis in callus cultures revealed that in both fusion combinations 40–120 N. plumbaginifolia chromosomes were present, as were 9–20 potato chromosomes. Cells with 17 potato chromosomes in combination with a relatively small number (31) of N. plumbaginifolia chromosomes were found in one line. Preferential loss of species-specific chromosomes was not observed. Analysis of regenerating tissue from three lines of Cnx 20 + H7322 revealed that after 24 months of culture intra- and intergeneric translocations, fragments and deletions were present. Elimination of the potato and N. plumbaginifolia chromosomes had taken place before and after genome doubling.  相似文献   

11.
Interspecific F1 hybrid females of D. serido and D. buzzatii are fertile, but hybrid males are sterile. By successive backcrossing of hybrid females to D. buzzatii males it is possible to diminish the genomic contribution of D. serido to the hybrid karyotype. Finally, only selected chromosome sections of D. serido known as inversions restricted to this species were individually left in the otherwise D. buzzatii karyotype, namely: 2 C2b-F4a (j9m9n9), 2 B2c-F4a (j9k9), 3 C5a-G1b (k2), 4 E2a-G2f (m) and 5 C5d-F2h (w). The present paper deals with the influence of these chromosome sections on sperm differentiation. Any of them produces hybrid male sterility in heterozygous condition. We analyzed spermiogenesis using the DNA specific fluorescence dye BAO in hybrid males which were heterozygous either for only one inversion, as in chromosomes 3, 4 and 5, or for a series of inversions on the same chromosome, as in chromosome 2. The abnormalities recorded included abnormal formation of the cysts, lower than normal number of cysts, abnormal number of nuclei per cyst, incomplete elongation of the cyst, incomplete elongation of the nuclei, displacement of the nuclei from the head region of the cyst and lack of individualization. In no case was there any contents in the seminal vesicle. The section from chromosome 2 of D. serido had the most drastic effect; the disruption produced by the chromosome section corresponding to inversion 3 k2 was only a little more severe than that due to 5 w, and both may be distinguished only quantitatively; inversion 4 m produced the slightest deviation from normal spermiogenesis. The larger the serido section introduced in the hybrid, the more severe were the abnormalities it produced. An interpretation in terms of a balance genic theory on the functioning of the genetic system is given.This is paper No. VII in the series The evolutionary history of Drosophila buzzatii.  相似文献   

12.
W. Traut  A. Weith  G. Traut 《Genetica》1986,69(1):69-79
In a search for genetic markers of W-chromosome-autosome fusions in Ephestia, two closely linked autosomal markers, ml and Us, were found to show sex linkage in several families of chromosome mutant strains. In these families, the wild-type allelomorphs, ml + and US +, label the autosome that is translocated to the W chromosome. With ml (musterlos) a sex dimorphic strain could be established in which males (ml/ml) have patternless wings and females (ml +/ml) have the normal wing pattern.—Using these genetic markers, stability of the fusion chromosome was studied. Recurrence to autosomal inheritance of the marker occurs at a considerable rate. In two chromosome fusion strains, a cytogenetically detectable breakage of the fusion giving rise to a wild-type-like W chromosome was the predominant cause for the recurrence of the marker to autosomal inheritance. In a third strain a more complicated chromosome rearrangement was the predominant cause: the translocated autosome was replaced by a non-homologous one, presumably after a cytogenetically undetectable breakage event of the original fusion. — The high rate of breakage suggests that the fusion chromosomes are dicentrics, a situation not compatible with a typical holokinetic organization of Lepidoptera chromosomes.  相似文献   

13.
Barbara Meer 《Chromosoma》1976,57(3):235-260
Male hybrids of the cross D. azteca x D. athabasca are larger (hybrid giant males) than their parents, whereas hybrid females are of the same size as the parental species. Microspectrophotometric measurements have shown that the larval polytene salivary gland chromosomes of hybrid giant males undergo one more endoreplication than those of their sisters or parents. Replication patterns of the larval salivary gland chromosomes were compared after pulse labeling with 3H-thymidine and autoradiography. In females of either species as well as of hybrids X-chromosomes and autosomes are equally labeled, i.e. all chromosome arms replicate synchronously. In males, however, often fewer sites are labeled on the X-chromosome than on the autosomes. In addition, in a significant number of nuclei from D. athabasca males and also from hybrid giant males the converse can also be observed: i.e. more sites are labeled on the X-chromosome than on the autosomes. The modified labeling patterns are interpreted as an indication of a time-shift in the replication of hemizygous X-chromosomes in males, in relation to the autosomes.  相似文献   

14.
Summary electron microscope study of spermatogenesis and spermiogenesis in Gryllus domesticus has revealed the existence of peculiar lamellate bodies which occur both in spermatocyte and spermatid nuclei. These bodies must be considered as multiple complexes of the axial core structures which are regularly found in paired pachytene chromosomes. Their shape is irregular, and their constituent structural elements, although having dimensions and a fine structure identical to those of regular axial complexes, may assemble in sheets rather than ribbons, often in a concentric rather than planparallel multiple layer system.Spcrmatocyte nuclei may either contain just one or two large bodies of this type, often but not always in close association with the nucleolus and/or the X chromosome, or they may show several such structures of smaller dimensions which have some connection to chromosome fibrils. None of the two types of nuclei simultaneously contains regular axial core complexes. In spermatid nuclei one or two such multiple structures are usually found, again often in association to the X and/or (in O-spermatids) to what appears to be a nucleolus.It is considered likely that the multiple core complexes are due to the self-assembly of those protein molecules which typically assemble only under the control of and in close association with the pachytene chromosomes to form ordered axial complexes. Their occurrence in spermatids shows that the constituent molecular material may not be decomposed during the meiotic divisions after it is dissociated from the chromosomes.

Mit Unterstützung durch die Göttinger Akademie der Wissenschaften.

Herrn Prof. Dr. H. Bauer zu seinem 60. Geburtstag gewidmet.  相似文献   

15.
Nucleolar behaviour in Triticum   总被引:1,自引:1,他引:0  
The maximum number of major nucleoli (macronucleoli) per nucleus of hexaploid, tetraploid and diploid wheat, Aegilops speltoides and Ae. squarrosa corresponded to the number of satellited chromosomes of each species. Smaller nucleoli (micronucleoli) were rare or absent in all of these species except the hexaploid, in which they were predominantly organized on chromosome arm 5Ds. — Fewer than the maximum number of macronucleoli in a mitotic interphase nucleus resulted from fusion of developing nucleoli. Enforced proximity of nucleolus-organizing regions resulted in more frequent fusion of nucleoli. — Analyses of related interphase nuclei showed that nucleoli, and hence probably chromosomes, undergo limited movement during mitotic interphase. These observations also indicate that specific chromosomes do not occupy specific sites in the interphase nucleus.  相似文献   

16.
Abnormally large chromosomes which appear to result from the fusion of 2 chromosomes of the normal karyotype have been found in diploids of Dictyostelium discoideum formed by parasexual fusion of haploid strains HU483 (n=7) and HU245 (n=7). These fusion chromosomes appear to be the products of the tandem translocation of most, if not all, of one acrocentric chromosome to the telomere of a second acrocentric. Thus the chromosome number of the diploids is reduced from the normal 2n=14 to 2n=13 with the formation of an abnormally large acrocentric fusion chromosome. Experimental haploidisation of such diploids results in two types of products, those with a normal 7 chromosome karyotype and those with an abnormal 6 chromosome karyotype which contains the fusion chromosome. Genetic analysis of haploid segregants indicates that linkage groups II and VII are involved in this fusion. Phenotypes of recombinant diploids obtained following mitotic crossing-over establishes that linkage group II is proximal to linkage group VII. Cytological examination of the karyotypes of haploid strains bearing the fusion chromosome suggest that chromosome 2 may correspond to linkage group II and chromosome 3 to linkage group VII. Haploid strains bearing the fusion chromosome grow and develop normally so little or no genetic information can have been lost in the fusion event. While the nature of this event is unknown it may have involved aberrant recombinational DNA repair since the parental haploid strain HU483 bears the radB13 DNA repair mutation.  相似文献   

17.
Summary The genetic constitution of the cell hybrids Atropa belladonna + Nicotiana chinensis, obtained by cloning of individual heteroplasmic protoplast fusion products (Gleba et al. 1982) and cultured in vitro for 12 months, has been studied. The study comprised 11 hybrid cell clones of independent origin and included analysis of a) chromosome number, size, morphology, and relative position in metaphase plates, b) multiple molecular forms of the enzymes esterase and amylase, and c) relative nuclear DNA content. The data obtained permit us to conclude that, after one year of unorganized growth in vitro, the cells of most (8) clones had retained chromosomes of both parents, while species-specific elimination of nearly all Atropa chromosomes had occurred in three clones. About half of the non-segregating clones possess 120–150 chromosomes including 50–70 of Atropa and 50–90 of Nicotiana. Other clones are polyploid and possess 200–250 chromosomes with a predominance of either Atropa or Nicotiana chromosome types. Only a few chromosomal changes (reconstituted chromosomes, ring chromosomes) have been detected. In some metaphase plates, chromosomes of the two parents tend to group separately, indicating non-random arrangement of chromosomes of the two parents within the hybrid nucleus. Cytophotometric studies of the relative nuclear DNA content showed that distribution histograms for cell clones were similar to those of non-hybrid cultured cells. Cell populations were relatively homogenous and do not indicate any genetic instability as a result of hybridization between remote plant species. Biochemical analysis of isoenzyme patterns confirmed that in most cell clones, species-specific multiple molecular forms of esterase and amylase from both parents were present, i.e. genetic material of both parental species was expressed in the cell hybrids.Dedicated to Professor G. Melchers with gratitude  相似文献   

18.
In monosomic additions of Aegilops sharonensis to Chinese Spring wheat (2n=42 wheat chromosomes + 1 homoeologous group 4 Aegilops chromosome known as 4S1), probably all functional gametes carried one Aegilops chromosome. Such preferential transmission is unusual in monosomic alien additions. Male and female meiosis seemed usually normal, but about 75% of embryo sacs and 28% of pollen grains were visibly abnormal near anthesis. Before the first gametophyte mitosis, up to about 13% of megaspores and pollen grains showed abnormalities usual in wheat aneuploids. However, in first mitosis, 50% of megaspores at metaphase and anaphase and 41% of pollen grains at anaphase and telophase contained acentric chromosome (or chromatid) segments of various sizes, up to about 32 in a cell, which were separated from the rest of the chromosome (or chromatid) by a gap or a thin Feulgen-positive thread. Such separated segments (SSs) are not normally seen in wheat and its aneuploids. The data indicat that alien and wheat chromosomes interact in meiocytes so that meiospores with the alien chromosome develop into normal gametophytes, but meiospores lacking the alien chromosome have SSs at first mitosis by whose loss or unequal distribution between daughter nuclei sterilizing deficiencies arise. Thus only gametophytes with the alien chromosome are competent.  相似文献   

19.
Summary Following fusion of protoplasts from a chlorophyll-deficient diploid mutant of Datura innoxia Mill. which can be regenerated to shoots, with green wild-type protoplasts of Datura stramonium L. var. tatula L. which can not, it was possible to isolate 49 green hybrid calli on agar medium. Most of these somatic hybrid calli gave rise to leaves and shoots. The chromosome numbers of the somatic hybrids were determined: 15 were tetraploid (amphidiploid), 24 hexaploid, and the other showed an aneuploid chromosome number.In a similar experiment protoplasts of the Datura innoxia mutant were fused with green wild-type protoplasts of Datura discolor Bernh. which are also not able to be regenerated, four green calli were obtained from which leaves and shoots developed after some transfers on agar medium. Three of them showed the amphidiploid (48) chromosome number, whereas one possessed an aneuploid number of 46 chromosomes.After transfer of rooted shoots to soil flowering plants could be obtained in both combinations. The habits of the somatic hybrids in both combinations were intermediate between the habits of the respective parental plants.Dedicated to my father, Prof. Dr. Theodor Schieder, on the occasion of his 70th birthday.  相似文献   

20.
The mechanism of chromosome banding induced by restriction endonucleases was analyzed by measuring the amount of radioactivity extracted from [14C]thymidine-labeled chromosomes digested first with restriction enzymes and subsequently with proteinase K and DNase I. Restriction enzymes with a high frequency of recognition sites in the DNA produced a large number of short DNA fragments, which were extracted from chromosomes during incubation with the enzyme. This loss of DNA resulted in decreased chromosomal staining, which did not occur in regions resistant to restriction enzyme digestion and thus led to banding. Subsequent digestion of chromosomes with proteinase K produced a further loss of DNA, which probably corresponded to long fragments retained in the chromosome by the proteins of fixed chromatin. Restriction enzymes induce chromatin digestion and banding in G1 and metaphase chromosomes, and they induce digestion and the appearance of chromocenters in interphase nuclei. This suggests that the spatial organization and folding of the chromatin fibril plays little or no role in the mechanism of chromosome banding.It was confirmed that the pattern of chromosome banding induced by AluI, MboI, HaeIII, DdeI, RsaI, and HinfI is characteristic for each endonuclease. Moreover, several restriction banding polymorphisms that were not found by conventional C-banding were detected, indicating that there may be a range of variability in the frequency and distribution of restriction sites in homologous chromosome regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号