首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proliferation of cells undergoing chondrogenesis in vitro   总被引:3,自引:0,他引:3  
Abstract. Continuous exposure of chicken embryo limb bud mesenchyme cells undergoing chondrogenesis in vitro to [3H] thymidine ([3H]TdR) revealed that more than 90% of the cells synthesized DNA at least once during 120 h of culture. When cells were exposed to [3H]TdR for 24 h beginning at various times throughout the culture period, the percentage of cells which incorporated [3H]TdR during each period was approximately 92%. However, when the period for incorporation of radioisotope was limited to two hours, the number of cells which incorporated [3H]TdR was found to decline during chondrogenesis in vitro. This decline was coincident with the appearance of extracellular matrix material and occurred in those cells which had, and had not, expressed the cartilage phenotype.
We conclude from these studies that (1) practically all of the cells continue to proliferate while chondrogenesis is occurring in vitro, (2) there is an increase in the length of the cell cycle during chondrogenesis in vitro, and (3) withdrawal from the cell cycle is not required for differentiation of mesenchyme into cartilage.  相似文献   

2.
Summary In an effort to establish a more chemically defined culture system to study the regulation of chondrogenic differentiation in vitro, two commercially available serum replacements, NuSerum and NuSerum IV, were tested on embryonic limb mesenchyme. Limb bud (LB) mesenchymal cells were isolated from Hamilton-Hamburger stage 23–24 chick embryos and plated at various densities (1, 5, 10, or 20 × 106 cells/ml) in micromass culture for 4 days in media supplemented with 10% fetal bovine serum (FBS), NuSerum or NuSerum IV. Cell growth was assessed by the incorporation of [3H]leucine and [3H]thymidine. Chondrogenesis was determined by the incorporation of [35S]sulfate and by the number of Alcian blue-staining cartilage nodules. In high density (20 × 106 cells/ml) cultures, which favored chondrogenic differentiation, both serum replacements supported protein synthesis and chondrogenesis equally well as FBS. In cultures plated at 5 × 106 cells/ml, a cell density in which was chondrogenesis-limiting, both NuSerum and NuSerum IV significantly enhanced incorporation of [35S]sulfate (2.6-fold), [3H]leucine (1.4-fold), and [3H]thymidine (1.9-fold), compared to FBS. Enhancement of chondrogenesis was also apparent by the increases in the number of Alcian blue-staining cartilage nodules and the ratio of sulfate: leucine incorporation in cultures plated at 5 × 106 cells/ml. Interestingly, the localization of cartilage nodules was extended out to the periphery of micromass cultures fed with NuSerum or NuSerum IV. The observed effects of NuSerum and NuSerum IV may be attributed to a combination of factors, including lower concentrations of serum and its associated proteins, as well as supplemented growth factors and hormones known to promote cell proliferation and differentiation. Therefore, NuSerum and NuSerum IV are excellent, low-cost replacements for FBS in maintaining cellular growth and promoting chondrogenesis in LB mesenchymal cell cultures in vitro.  相似文献   

3.
The fate of Meckel's cartilage chondrocytes in ocular culture   总被引:3,自引:0,他引:3  
Modulation of the chondrocyte phenotype was observed in an organ culture system using Meckel's cartilage. First branchial arch cartilage was dissected from fetal rats of 16- and 17-day gestation. Perichondrium was mechanically removed, cartilage was split at the rostral process, and each half was grafted into the anterior chamber of an adult rat eye. The observed pattern of development in nonirradiated specimens was the following: hypertrophy of the rostral process and endochondral-type ossification, fibrous atrophy in the midsection, and mineralization of the malleus and incus. A change in matrix composition of the implanted cartilage was demonstrated with immunofluorescence staining for cartilage-specific proteoglycan (CSPG). After 15 days of culture, CSPG was found in the auricular process but not in the midsection or rostral process. In order to mark the implanted cells and follow their fate, cartilage was labeled in vitro with [3H]thymidine [3H]TdR). Immediately after labeling 20% of the chondrocytes contained [3H]TdR. After culturing for 5 days, 20% of the chondrocytes were still labeled and 10% of the osteogenic cells also contained radioactive label. The labeling index decreased in both cell types with increased duration of culture. Multinucleated clast-type cells did not contain label. Additional cartilages not labeled with [3H]TdR were exposed to between 20000 and 6000 rad of gamma irradiation before ocular implantation. Irradiated cartilage did not hypertrophy or form bone but a fibrous region developed in the midsection. Cells of the host animal were not induced to form bone around the irradiated cartilage. Our studies suggest that fully differentiated chondrocytes of Meckel's cartilage have the capacity to become osteocytes, osteoblasts, and fibroblasts.  相似文献   

4.
Earlier studies from this laboratory suggested that embryonic chick bones in organ culture released into the culture medium a specific inhibitor of bone cell proliferation as defined by inhibition of [3H]TdR incorporation into DNA. Dialysis and membrane ultrafiltration experiments suggested that the inhibitory substance (IS) had a molecular weight between 6000 and 14,000. However, subsequent studies on the purification of IS have revealed that the inhibitory activity in bone-conditioned medium is of lower molecular weight and has several properties in common with thymidine (TdR): (1) IS coeluted with [3H]TdR upon gel filtration chromatography on Sephadex G-10. (2) IS bound to charcoal but not to cation or anion exchange resins. (3) Bone-conditioned medium decreased incorporation of [3H]TdR into the free [3H]TdR pool of cells in monolayer culture. (4) Conditioned medium inhibited [3H]TdR incorporation into [3H]thymidine monophosphate in a reaction catalyzed by thymidine kinase. The equivalent concentration of TdR in conditioned medium as estimated by thymidine kinase assay was sufficient to account for the reduction in [3H]TdR incorporation into bone cell DNA. No evidence was found for a specific inhibitor of bone cell proliferation other than TdR. Hence we conclude that the inhibitory effect of IS is due to dilution of [3H]TdR by nonradioactive TdR. Furthermore, media conditioned by several tumor cell lines also contained a low-molecular-weight component which inhibited [3H]TdR incorporation. The results suggest that organ- and cell-conditioned media can contain significant concentrations of TdR which can artifactually inhibit [3H]TdR incorporation in cell proliferation assays.  相似文献   

5.
Summary Retinoids and growth factors seem to be important for normal mammalian reproduction and development. High levels of retinoic acid are teratogenic and induce cleft palate in the mouse. Little is known concerning the mechanisms through which retinoids induce cleft palate. Palatal epithelia from CD-1 embryonic mice on Day 12 of gestation were isolated from the mesenchyme and cultured in serum-free media, with all-trans retinoic acid or 13-cis retinoic acid, with or without epidermal growth factor (EGF). The epithelia attached and grew, and the cells differentiated over a 72-h culture period. Binding of [125I]EGF was observed in all cultures in a pattern that correlated with thymidine (TdR) uptake by the epithelia. EGF enhanced growth and [3H]TdR incorporation of the oral cells, but nasal cells generally did not proliferate. In this culture system, both retinoids suppressed [3H]TdR incorporation in a concentration-dependent manner for epithelia cultured with or without EGF. Medial cells are important to normal palatogenesis as they play a role in fusion of opposing shelves and subsequently many of these cells undergo programmed cell death. Death of medial cells in vitro is prevented by EGF and by the retinoids, either with or without EGF. This response occurs in the absence of a mesenchymal interaction, suggesting that the medial cell response to EGF and retinoids is not mediated by or dependent on the mesenchymal tissues. The survival of medial cells may be responsible for the failure of opposing shelves to fuse.  相似文献   

6.
Dual effects of estradiol on normal and tumor pituitary cell multiplication   总被引:1,自引:0,他引:1  
We have compared the effects of estradiol on the [3H]thymidine (TdR) incorporation into the DNA of 2 rat tissues whose growth is controlled by estradiol in vivo in 2 opposite directions: the normal anterior pituitary and the MtF4 pituitary tumor transplanted under the kidney capsule. Small pieces of pituitary or tumor from Fischer rats, treated or not by estradiol in silastic tubing, were incubated in vitro with [3H]TdR. The [3H]TdR incorporated per microgram DNA was decreased in tumor after 2 to 8 day-estradiol treatment while simultaneously, in the same rats, it was increased in the pituitary. In addition, we studied the effect of estradiol in vitro on the F4C1 cell line obtained from the MtF4 tumor. A dose-dependent decrease of both the [3H]TdR incorporated into DNA and the DNA amount was observed between 10(-6) and 10(-5) M estradiol. These results suggest that the control of the pituitary or MtF4 tumor growth by estradiol in vivo is in part due to an inhibition of cell multiplication. Although estradiol inhibits the growth of a clone of MtF4 tumor cells in vitro we cannot decide whether or not the in vivo effect of estradiol is direct.  相似文献   

7.
Mouse embryo cells exhibited a decline in proliferative capacity with increasing in vitro age. The ability of these monolayer cells to undergo DNA synthesis as a function of culture age was examined, and a progressive decline in the percentage of cells able to incorporate [3H]thymidine was found; in this respect they resembled normal human cells in culture. Instead of phasing out after a period of time, however, the mouse cultures were taken over by a continuously proliferating population of cells which displayed an elevated growth rate with a correspondingly large fraction of cells which incorporated [3H]thymidine. At a time subsequent to this in vitro alteration, after the cultures had stabilized as a permanent cell line, the cells developed the capability of forming tumors when tested in vivo. These results suggest that the acquisition of indeterminate lifespan and a high growth rate in culture may be early events in a multi-step process leading to malignancy.  相似文献   

8.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   

9.
About twice as much tritiated thymidine ([3H]TdR) is taken up by cells at the bottom of the crypt of the small intestine as by the rapidly cycling mid-crypt cells. However, the uptake of tritiated deoxyuridine ([3H]UdR) is even throughout the crypt. Exogenous thymidine is incorporated about four times and eight times more efficiently than deoxyuridine by the cells in the mid-crypt and cells at the bottom of the crypt, respectively. However all S phase cells in the crypt appear to be capable of using either precursors, i.e. either the de novo or salvage pathway. Since methotrexate (1 or 5 mg/kg) inhibits (at 5 mg/kg completely) the uptake of [3H]UdR, but has no effect on [3H]TdR uptake, the de novo and salvage pathways appear to be independent. Within the precision of the methods used in the experiments the 3 hr inhibition of the de novo pathway of deoxythymidylic acid (dTMP) synthesis by methotrexate does not produce any increase in utilization of the salvage pathway measured by incorporation of [3H]TdR into DNA. The increased efficiency of thymidine utilization by crypt base cells is not attributable to differences in accessibility of thymidine; differences in the rate of DNA synthesis or the size of the nuclei. It appears that crypt base cells (which include the putative stem cells) are efficient scavengers of [3H]TdR, and this might be related to the level of thymidine kinase activity within the cells, and/or to changes in the availability of endogenous thymidine (break-down products) which compete with exogenous [3H]TdR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

11.
Connective tissue outgrowths of neonatal muscle onto a substratum of bone matrix differentiate into cartilage in response to a bone morphogenetic protein (BMP). The BMP can be separated from bone matrix by extraction with 4 M guanidine hydrochloride (GuHCl) or degraded in situ by endogenous proteolytic enzymes to deactivate the matrix. Rat triceps muscle was minced in a suspension of noncollagenous bone matrix proteins including BMP (BMP/NCP) in culture medium. To investigate the possible synergistic interactions in induced chondrogenesis, six biosynthesized, highly purified growth factors were similarly added to the culture alone or in combination with BMP. Human interleukin-1 (IL-1) and Forskolin were also introduced to test the effects on BMP/NCP-induced chondrogenesis. On Day 14 of cultivation, [3H]thymidine incorporation into DNA and [35S]sulfate incorporation into glycosaminoglycans (GAG) were measured, and the values were expressed as percentages of the control. The quantity of induced cartilage formation was estimated by a histomorphometric scoring system. Under the influence of BMP/NCP, cultures grew on deactivated matrix, incorporated 55% more [3H]thymidine into DNA, incorporated 115% more [35S]sulfate into GAG than control cultures, and differentiated into cartilage. Without BMP/NCP, growth factors, IL-1, and Forskolin did not produce a comparable incorporation of either [3H]thymidine or [35S]sulfate, and they induced differentiation of fibrous tissue only. In the presence of BMP/NCP, cartilage developed in nearly all cultures. When the media were supplemented with growth factors, measurable increases in uptake of [3H]thymidine occurred with human epidermal growth factor (h-EGF), insulin-like growth factor-1 (IGF-1), nerve growth factor (NGF), transforming growth factor-beta (TGF-beta), bovine acidic fibroblast growth factor (baFGF), IL-1, bovine basic fibroblast growth factor (bbFGF), and Forskolin. Measurable increases in uptake of [35S]sulfate into GAG occurred with IL-1, baFGF, TGF-beta, h-EGF, IGF-1, bbFGF, NGF, and Forskolin. Synergistic interaction with BMP was considered when the quantity of cartilage developed (on a scale of 0-12 scores) in excess of the quantity of Score 4 induced by BMP/NCP alone. A cytokine, IL-1, had the greatest effect (Score 9). TGF-beta (Score 7), baFGF (Score 6), and NGF (Score 6) had relatively little effect. h-EGF, IGF-1, bbFGF, and Forskolin had no effect on cartilage development.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The effect of human tumor necrosis factor (TNF) on early-passage HL-60 cells was studied. A transient phase of increased [3H]thymidine (TdR) incorporation was noted at 20-24 hr of exposure to TNF. This increase was disproportionate to the much slighter stimulation of the percentage of S-phase cells, which was measured by flow cytometry. Evidence for increased metabolic trapping of [3H]TdR following TNF treatment was apparent from whole cell uptake experiments. The salvage pathway enzyme TdR kinase was therefore measured and was found to be elevated comparably to [3H]TdR uptake. The mechanism of TNF regulation of TdR kinase was further investigated by a series of combination treatment experiments using other biologic factors and pharmacologic inhibitors of various intracellular steps. The response to TNF was not potentiated or reproduced by IL-1, IL-2, IL-3, IL-4, G-CSF, M-CSF, GM-CSF or alpha- or gamma-interferon. Blockers of early signal transduction steps, including H7, W7, sphingosine, and pertussis toxin, failed to inhibit TNF stimulation of [3H]TdR incorporation. mRNA synthesis inhibition with alpha-amanitin blocked this TNF effect, as did cAMP but not cGMP analogues. A sensitizing effect was noted with amiloride or cytochalasin B, characterized by greater relative increases of [3H]TdR incorporation and TdR kinase activity in response to TNF. In the presence of cytochalasin B, TNF treatment resulted in no change or slight decreases in the percentage of S-phase cells. Regulation of TdR kinase could thereby be dissociated from the usual cell cycle control. This study thus documents a unique example of stimulation of thymidine salvage pathway metabolism by a biologic factor, dissociable from overall cell cycle regulation.  相似文献   

13.
Using radioautographic smear preparations of thymocytes and mesenteric lymph node (MLN) cells labelled with three different tritiated pyrimidine deoxyribonucleosides, the incorporation of DNA precursors was studied separately on large lymphocytes and small lymphocytes. Radioautographic reaction due to generally tritiated deoxycytidine ( [G-3H]CdR) labelling in vivo in large lymphocytes was more intense than that in small lymphocytes. When mice were sacrificed 6 hr after the administration of tritiated thymidine ( [3H]TdR), small lymphocytes were labelled more heavily than large lymphocytes. However, labelling intensity with [3H]TdR in large lymphocytes was greatly enhanced by the administration of 5-fluoro-deoxyuridine, whereas in small lymphocytes labelling intensity was only fairly enhanced by the same treatment. When cells were incubated in vitro with 5-tritium labelled deoxycytidine [( 5-3H]CdR) for 10 min, there was no significant difference in labelling intensities between large and small lymphocytes. In the case of [G-3H]CdR incorporation, the labelling intensity in large lymphocytes was found to be significantly stronger than that in small lymphocytes. Large as well as small lymphocytes incorporated [3H]TdR very well in vitro. However, addition of 5 X 0 X 10(-5) M of non-radioactive CdR to the medium greatly decreased the incorporation of [3H]TdR by large lymphocytes, whereas the effect of non-radioactive CdR in small lymphocytes was not so marked as that in large lymphocytes. Furthermore, the [3H]TdR-labelling percentages were decreased at the same rate by the addition of non-radioactive CdR in both large and small lymphocytes. These results indicate that large lymphocytes and a proportion of small lymphocytes have a strong tendency to convert CdR to thymidine mono-phosphate, which is utilized for DNA synthesis, whereas this ability is relatively weak in the rest of small lymphocytes. Thus, it is probably that this metabolic ability changes during the transition of the large lymphocyte to the small lymphocyte.  相似文献   

14.
Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.  相似文献   

15.
Information on the cell cycle of progenitor cells in haemopoietic tissue is useful for understanding population control under physiological and abnormal conditions. Unfortunately, methods that have been developed for measuring cell cycle parameters are applicable only to cells of homogenous populations and not to morphologically non-recognizable progenitor cells such as colony forming units (CFU) that are present at low frequency in a heterogenous population. to circumvent this difficulty, a method was developed to measure CFU cell cycle parameters based on specific killing of cells in S phase by [3H]thymidine ([3H]TdR). This was done by estimating the number of CFU killed following exposure of the cell suspension to [3H]TdR for various time periods. Since cycling CFU are continuously entering S phase, a linear curve relating the percentage CFU-kill to the length of exposure of the cells to [3H]TdR in culture can be obtained. the slope of the curve (percentage kill/hr) indicates the rate that CFU enter the S phase and travel through the cell cycle. the inverse of this value will then represent a time period for CFU to move through a complete cell cycle (generation time). the length of S phase can then be obtained by multiplying generation time by the fraction of cells in S phase at time zero. This method has been used to measure generation time and length of S phase of three kinds of haemopoietic progenitor cells: mouse granulocyte-macrophage CFU, human T lymphocyte CFU and CFU from regenerating mouse spleens. This method should be applicable to any normal or neoplastic clonogenic cell populations and the latter could be either of haematological or of solid tumour origin.  相似文献   

16.
The influence of aminopterin (AP), tritiated thymidine ([3H] TdR) and "cold" thymidine (TdR) on production of chromosomal aberrations in meristematic cells of Crepis capillaris irradiated in different stages of the mitotic cycle with 300 rad of 63Co gamma-rays was studied. All the chemical treatments increased most of all the frequency of aberrations induced during two "critical periods" localized before the stage of DNA synthesis (fixation 9 h after irradiation) and before that of mitosis (4 h). Treatments with TdR and [3H]TdR increased most of all the frequency of chromatid aberrations when irradiation was performed in G1, and the frequency of gaps when irradiated in G2. Treatment with AP increased the yield of different types of aberration more uniformly. The modifying effect of the chemicals tested appeared to be independent of replicative synthesis. The "critical periods" are suggested to be the stages when regular "proof reading" and correction of spontaneous errors takes place [9,13]. In addition to this regular mechanism, radiation induces an "emergency" mechanism of repair. AP inhibits the mechanism of regular repair; in addition TdR and [3H] TdR suppress the lateral spread of primary injuries across the chromosome.  相似文献   

17.
By use of pulse-chase exposure of dissociated cells of rat fetal spinal cord or brain to [3H]thymidine (TdR) and unlabeled TdR it has been shown that oligodendroglial precursors which do not express galactocerebroside (GalC) divide first and later differentiate to express GalC. The rate of proliferation of more mature GalC+ oligodendrocytes is considerably lower than that of their GalC- precursors. It has been found that oligodendrocyte precursor cells are extremely sensitive to [3H]TdR irradiation. Exposure to as little as 0.03 microCi/ml for 24 hr proved to be harmful, particularly during a critical period before birth. This critical period corresponded to the peak of division of oligodendrocyte precursor cells.  相似文献   

18.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

19.
20.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号