首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proliferation of cells undergoing chondrogenesis in vitro   总被引:3,自引:0,他引:3  
Abstract. Continuous exposure of chicken embryo limb bud mesenchyme cells undergoing chondrogenesis in vitro to [3H] thymidine ([3H]TdR) revealed that more than 90% of the cells synthesized DNA at least once during 120 h of culture. When cells were exposed to [3H]TdR for 24 h beginning at various times throughout the culture period, the percentage of cells which incorporated [3H]TdR during each period was approximately 92%. However, when the period for incorporation of radioisotope was limited to two hours, the number of cells which incorporated [3H]TdR was found to decline during chondrogenesis in vitro. This decline was coincident with the appearance of extracellular matrix material and occurred in those cells which had, and had not, expressed the cartilage phenotype.
We conclude from these studies that (1) practically all of the cells continue to proliferate while chondrogenesis is occurring in vitro, (2) there is an increase in the length of the cell cycle during chondrogenesis in vitro, and (3) withdrawal from the cell cycle is not required for differentiation of mesenchyme into cartilage.  相似文献   

2.
Environmental enhancement of in vitro chondrogenesis   总被引:5,自引:0,他引:5  
In most in vitro tissue interaction studies, it is assumed that the negative control of the culture system (i.e., the tissue which does not differentiate when isolated) is representative of an in vivo situation, and that the isolated tissue is quite unable to differentiate without the interacting tissue. It is becoming increasingly obvious that the failure of isolated tissues to differentiate in vitro may be due to the techniques of the experimenter, not necessarily to metabolic deficiencies of the tissue.  相似文献   

3.
Cellular interaction and chondrogenesis in vitro   总被引:5,自引:0,他引:5  
  相似文献   

4.
Mesenchymal condensation is a critical transitional stage that precedes cartilage formation during embryonic development. We hypothesized that "priming" hMSCs to recapitulate mesenchymal condensation events prior to inducing differentiation would enhance their subsequent chondrogenic properties. Our prior studies have suggested that exposing hMSCs to hypoxia (2% O(2)) induces condensation-like effects. We therefore assessed the effect of preconditioning for different time periods on the expression of condensation specific genes by growing hMSCs in expansion medium under different normoxic (20% O(2)) and hypoxic conditions for up to 2 weeks, and subsequently induced chondrogenesis of preconditioned hMSCs. The total cultivation time for each group was 4 weeks and the chondrogenic properties were assessed using gene expression, biochemical analysis, and histological staining. Our results demonstrated the benefits of preconditioning were both time- and oxygen-dependent. Condensation specific genes, SOX-9 and NCAM, were significantly up-regulated in hypoxic conditions at the end of 1 week. COL X and MMP13 expression was also lower than the normoxic samples at this time point. However, this group did not exhibit more efficient chondrogenesis after 4 weeks. Instead, hMSCs preconditioned for 1 week and subsequently differentiated, both under 20% O(2), resulted in the most efficient chondrogenesis. Interestingly, while hypoxia appears to positively enhance expression of chondrogenic genes, this did not produce an enhanced matrix accumulation. The results of this study emphasize the significance of considering the timing of specific cues in developing protocols for stem cell-based therapies and underscore the complexity in regulating stem cell differentiation and tissue formation.  相似文献   

5.
Summary Cytochalasin B (CB) has been shown to have many biological effects on cultured cells. We report that an initial 48-hr treatment of freshly plated chick embryo limb mesoderm cells with CB irreversibly inhibits chondrogenesis. A slight inhibition in the amount of matrix is seen when limb cells are allowed to grow in culture for 24 hr prior to treatment for the second 24 hr of culture. If the cells are allowed to plate-out and grow for 48 hr or longer prior to being treated with CB for 24 hr, the amount of matrix produced is essentially the same as that seen in the controls. However, if the initial 48-hr culture period is followed by a 48- or 72-hr treatment, chondrogenesis is reduced, but not to the same extent as that seen in cultures treated for the first 48 or 72 hr. The irreversible inhibition of chrondrogenesis does not appear to be due to irreversible inhibition of protein synthesis or hexose uptake because, although these are reduced during treatment, they return to control levels within 48 hr following the removal of the drug. We cannot mimic the effect of CB treatment using glucose-deficient medium, thereby eliminating the possiblity that a critical glucose level is necessary to permit chondrogenesis. Multinucleation of limb cells treated with CB is reversed within 4 to 7 days following the removal of the drug. Therefore multinucleation alone is probably not responsible for the CB effect on chondrogenesis. However, other subtle permanent changes may occur during the period of multinucleation which result in the irreversible inhibition of chondrogenesis. This work was supported in part by a grant to R. A. F. from the North Carolina United Way and a grant to C. L. P. from the General Research Support Grant RR-5404 from the National Institutes of Health. A portion of these results were presented at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, 1977.  相似文献   

6.
In vitro chondrogenesis and cell viability   总被引:1,自引:0,他引:1  
Anterior somites cultured with (NSA) or without (SA) notochord, and posterior somites cultured with (NSP) or without notochord (SP) were compared with respect to changes in their DNA content, their potential to synthesize the active sulfate principle phosphoadenosine phosphosulfate (PAPS), and their ability to accumulate 35S-sulfate.Chondrogenesis was observed in the NSA, NSP, and SP explants, but was rarely noted in the SA explants. A decrease in DNA content during the initial 48 hr of culture was common to all explants. After this initial decrease, DNA content increased most in those explants forming cartilage. The synthesis of PAPS by cell-free extracts of each type of somite explant also decreased during the initial period of culture. Only extracts of those explants undergoing chondrogenesis showed increases in PAPS synthesis with continued culture. Each type of somite explant accumulated 35S-sulfate into chondroitin sulfate during the first hours of culture. The non-chondrogenic SA explants accumulated little 35S-sulfate during the period of culture. At varying times after 24 hr the chondrifying explants (NSA, SP, and NSP) initiated an increased rate of accumulation of 35S-sulfate.Cartilage nodules, increases in DNA content, PAPS synthesis and 35S-sulfate accumulation occurred within the same 24 hr period, during the 2nd day in NSP explants, the 3rd day in NSA explants, and between the 3rd and 4th day for SP explants. A hypothesis of in vitro somite chondrogenesis based on differential cell viability is presented.  相似文献   

7.
8.
9.
Wei Y  Sun X  Wang W  Hu Y 《Cytotherapy》2007,9(8):712-716
Cartilage has only a very limited capacity to renew its original structure. Stem cells have been used to repair damaged cartilage, and recent studies have indicated that stem cells from adipose tissue are attractive cell sources that have the capacity of multipotentiality to differentiate into osteogenic, chondrogenic, myogenic, neurogenic and endothelial cells. Adipose-derived stem cells (ASC) have unique characteristics compared with stem cells from BM. At present, ASC have been studied to promote chondrogenesis. This review discusses the application of ASC to cartilage formation.  相似文献   

10.
Proteoglycan complex extracted from embryonic cartilage (chondromucoprotein) with 4.0 M guanidinium chloride greatly stimulates in vitro somite chondrogenesis. In the presence of exogenous chondromucoprotein (CMP) which consists predominantly of proteochondroitin sulfate, there is a large increase in the amount of differentiating cartilage which can be detected visually in somite explants. There is a 2–3-fold increase in the amount of sulfated glycosaminoglycans (including chondroitin 4- and 6-sulfate) accumulated by somite explants supplied with exogenous CMP complex. These results are of potential significance, since during the period of interaction between the notochord or spinal cord and somitic mesoderm, the notochord and spinal cord synthesize and secrete proteoglycan.  相似文献   

11.
Mesenchymal cells from the wing buds of stage 24 chick embryos undergo differentiation to cartilage when plated at high density. Treatment of these cultures with phospholipase D resulted in inhibition of chondrogenesis. Phospholipase D treatment (which produces phosphatidic acid from membrane phospholipids) was found to affect cell proliferation and to dramatically increase intracellular free calcium levels and inositol phosphate production. Intracellular free Ca2+, mobilized as a result of phosphatidylinositol phosphate hydrolysis, may therefore inhibit chondrogenesis in embryonic mesenchymal cells.  相似文献   

12.
Dissociated stage 21–28 chick embryo limb bud cells showed an increasing ability to produce cartilage colonies in vitro with in vivo maturation. In addition dissociated stage 21–28 chick embryo limb bud cells exposed to cartilage conditioned medium continuously or only for 48 hr prior to subculture showed an enhanced (as much as 15-fold) ability to form differentiated cartilage colonies. By this criterion, cells were more responsive to conditioned medium prior to stage 25. Conditioned medium from fibroblast cultures caused an inhibition of cartilage colony formation, suggesting that the effect is cell-type specific. Besides increasing cartilage colony formation by enhanced cell survival, the incorporation of S35O4 into isolated glycosaminoglycans is also stimulated when limb bud cells are exposed to cartilage conditioned medium. The results support a model for cell differentiation which involves the enhancement of a particular differentiated capacity by a diffusible cell-type-specific macromolecule.  相似文献   

13.
14.
This paper contains observations and experiments which collectively demonstrate a requirement for cell-cell interactions among limb bud mesenchyme cells during chondrogenic differentiation. Limb bud cells isolated from brachypodismH (bpH) and wild-type mouse embyros between Thieler stage 16–17 and midstage 21 were compared with respect to their abilities to undergo chondrogenic differentiation in high-density micromass cultures. Nodules formed by dissociated Day 12 (stage 20) bpH limb bud cells have been reported previously to be abnormally reduced in size and number, and delayed in formation. We corroborate these results, but find that bpH cultures prepared from earlier-stage limb buds (between stages 16–17 and early stage 21) are progressively more like wild-type cultures. Stage 16–17 bpH cultures at 72 hr actually contain normal numbers of and size nodules, while stage 18 bpH cultures are intermediate between stages 16–17 and stage 21 in nodule formation. On the other hand, we also find that the initial rate of aggregate formation is normal even in bpH cultures prepared from stage 20 cultures in which nodule formation is not normal. Preparation of cultures composed primarily of early stage 21 bpH limb bud cells mixed with small quantities (e.g., 5%) of stage 16–17 wild-type limb bud cells showed significant increases in cartilage nodule formation over control cultures composed only of early stage 21 bpH cells. Greater proportions of wild-type cells obtained from embryos older than stages 16–17 were required for the same degree of normalization, supporting the hypothesis that a specific cell type, whose proportion decreases normally in the limb bud over time, is required to increase in vitro chondrogenesis by bpH cells. Additionally, cultures containing stage 23 chick limb cells and early stage 21 bpH cells at a ratio of 1:20 contained wild-type levels of nodules per square millimeter of culture. Thus, bpH cells appear to respond to chondrogenic inductive signals from normal limb mesenchyme cells. In order to test for the ability of bpH limb bud mesenchyme to induce chondrogenesis, stage 16–17 bpH and wild-type limb bud cells, which form identical numbers of aggregates and nodules in culture, were each mixed with early stage 21 bpH cells at ratios of 1:20, 1:10, and 1:3. Although low proportions of wild-type stage 17 cells significantly increased the number of aggregates and nodules in these mixed cultures, low proportions of bpH stage 16–17 cells did not. It is, therefore, concluded that the primary defect of the bpH mutation is likely to reside in the reduced ability of a specific mesenchyme cell subpopulation to provide an inductive stimulus for chondrogenesis.  相似文献   

15.
The sensitive step of inhibition of chondrogenesis in vitro by retinoids was investigated in modified micromass cultures of limb bud mesenchymal cells from mouse embryos of day 11 and 12. Evaluation of chondrogenesis was performed after alcian blue staining, using a simple random hit counting of cartilage nodules. All-trans-retinoic acid, 13-cis-retinoic acid, and a newly developed arotinoid, RO 13-6298, were tested for their ability to inhibit chondrogenesis. We found that inhibition of chondrogenesis depended on the dosage and the duration of treatment with the different retinoids. Further analysis showed that chondrogenesis in limb bud mesenchymal cells from the proximal part was irreversibly inhibited after one hour of treatment, whereas distal cells showed a reduction of cartilage development only after a treatment period of 12 and more hours. In respect to the doses of the retinoids, proximal cells were about one magnitude more vulnerable than distal cells. These proximo-distal differences were obtained with 13-cis-retinoic acid at 10 micrograms/ml, with all-trans-retinoic acid at 1 microgram/ml and with arotinoid RO 13-6298 with 10 ng/ml. It is supposed that the late blastemal stage of chondrogenic differentiation before the onset of matrix synthesis is the step which is most vulnerable to retinoid treatment.  相似文献   

16.
A consistent chondrogenesis takes place in micro-mass cultures of stage 23-24 chicken limb bud mesenchymal cells. In these cultures a short, marked elevation of cAMP level was detected at the time of the onset of cartilage phenotype expression. On the other hand, exogeneous glycosaminoglycans which inhibited chondrogenesis caused a reduction in the cAMP level of the cells. These correlations between cAMP level and phenotypic characteristics suggest that, among other things required in chondrogenesis, cAMP level may be a prominent factor.  相似文献   

17.
Extracellular matrix mediates epithelial effects on chondrogenesis in vitro   总被引:5,自引:0,他引:5  
It has been previously observed that single chick embryonic limb mesenchymal cells can differentiate into chondrocytes without cell-cell interactions when cultured in collagen or agarose gels. In the present study, limb ectoderm, but not dermis, inhibits chondrogenesis when placed on such collagen gel cultures. The inhibitory influence can be transmitted extensive distances in the gel, even when the ectoderm is placed on a porous filter. Collagen gels, preconditioned with limb ectoderms, are also inhibitory to chondrogenesis. On the other hand, chondrogenesis is less inhibited by ectoderm when the mesenchymal cells are placed in agarose. These results suggest that the antichondrogenic effect of limb ectoderm is mediated through alterations of the collagenous extracellular matrix and support the idea that the extracellular matrix must be considered as an organized, functional unit capable of regulating cell differentiation.  相似文献   

18.
The requirement for homotypic cell interaction was studied by making chimeric micromass cultures containing various proportions of chick and quail limb mesenchyme. Cultures made from limb mesenchyme from embryos of Hamburger and Hamilton stages 23–24 produce large clumps of cartilage cells, identified by the accumulation of an extracellular matrix which stains with alcian blue at pH 1 and by the ability of cells to take up 35SO4 rapidly, as demonstrated autoradiographically. Dissociated mesenchyme from stage 19 embryos did not produce cartilage in micromass cultures, but only precartilage cell aggregates. Micromass cultures prepared from mixtures of mesenchyme cells obtained from stage 19 and stages 23–24 embryos contained decreasing numbers of cartilage nodules as the proportion of stage 19-derived mesenchyme increased. At the same time the number of aggregates was not affected. When the ratio of stage 19- to stage 24-derived cells was 3:1 or greater, no nodules were detected. The actual number of cells from each stage was verified by using mixtures of quail and chick cells, which are microscopically distinguishable. Additional evidence suggests that the stage 19-derived mesenchyme inhibits chondrogenesis by passively preventing stage 24-derived cells from interacting. The results presented are consistent with the suggestions that (1) homotypic cell interaction plays a role in limb chondrogenesis and (2) the capacity to interact in the required manner is acquired after the embryos have reached stage 19. These phenomena might be involved in the normal histogenesis of cartilage tissue.  相似文献   

19.
This work describes an approach to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis with carboxymethyl-cellulose chromatography, immunofluorescence, and radioimmunoassay. This procedure allowed specific and quantitative determination of chondrocytes in the presence of fibroblasts and myoblasts, both of which synthesize type I collagen. Chondrogenesis was studied in high-density cell preparations on tissue culture plastic dishes and on agar base. It was found that stage-24 limb mesenchymal cells initially synthesized only type I collagen. With the onset of chondrogenesis, a gradual transition to type II collagen synthesis was observed. In cell aggregates formed over agar, type II collagen synthesis started after 1 day in culture and reached levels of 80-90 percent of the total collagen synthesis at 6-8 days. At that time, the cells in the center of the aggregates had acquired the typical chondrocyte phenotype and stained only with type II collagen antibodies, whereas the peripheral cells had developed into a "perichondrium" and stained with type I and type II collagen antibodies. On plastic dishes plated with 5 X 10(6) cells per 35mm dish, cartilage nodules developed after 4-6 days, but the type II collagen synthesis only reached levels of 10-20 percent of the total collagen. The majority of the cells differentiated into fibroblasts and myoblasts and synthesized type I collagen. These studies demonstrate that analysis of cell specific types of collagen provides a useful method for detailing the specific events in the differentiation of mesenchymal cells in vitro.  相似文献   

20.
There are increasing reports that mesenchymal stem cells (MSCs) are present in various tissues other than bone marrow, including synovium. Here we investigated the optimal conditions for in vitro chondrogenesis of human synovium-derived MSCs and compared these cells with bone marrow-derived MSCs, especially in terms of their chondrogenesis potential. Synovium and bone marrow were harvested from six donors during knee operations for ligament injuries. Digested synovium cells or nucleated cells from bone marrow were expanded clonally. A pellet culture system was used for chondrogenesis, and the best combination of up to three cytokines of the seven assessed. Synovium-derived MSCs plated at a lower density expanded more rapidly. Contrary to previous reports, a combination of TGFbeta and dexamethasone was not sufficient to induce chondrogenesis. However, addition of BMP2 to TGFbeta and dexamethasone dramatically increased cartilage pellet size and the synthesis of cartilage matrix. The cartilage pellets were also analyzed by electron microscopy and immunohistology. DNA content per pellet decreased during chondrogenesis, indicating the pellet increased its size through the accumulation of newly synthesized extracellular matrix. Sequential chondrogenic gene expression was demonstrated by RT-PCR. Synovium-derived MSCs looked similar to the bone marrow-derived MSCs in their surface epitopes and proliferation potential; however, cartilage pellets from synovium were significantly larger than those from bone marrow in patient-matched comparisons. We demonstrated that the combination of TGFbeta, dexamethasone, and BMP2 was optimal for in vitro chondrogenesis of synovium-derived MSCs and that the synovium-derived MSCs have a greater chondrogenesis potential than bone marrow-derived MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号