首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor on baboon platelets the binding of [125I]BOP was studied. [125I]BOP bound to washed baboon platelets in a saturable manner. Scatchard analysis of binding isotherms revealed a Kd of 1.12 +/- 0.08 nM and a binding capacity of 54 +/- 5 fmoles/10(8) platelets (326 sites/platelet). Several TXA2/PGH2 agonists and antagonists displaced [125I]BOP from its baboon platelet binding site with a rank order of potency similar to human platelets: I-BOP greater than SQ29548 greater than U46619 = I-PTA-OH greater than PTA-OH. I-BOP aggregated washed baboon platelets with an EC50 of 10 +/- 4 nM. The results indicate that [125I]BOP binds to the TXA2/PGH2 receptor on baboon platelets and that this receptor is similar to its human counterpart.  相似文献   

2.
Both thromboxane A2 (TXA2) and its precursor prostaglandin H2 (PGH2) are labile and share a common receptor. The affinities of these two compounds for their putative common receptor are unknown. We compared the potencies of TXA2 and PGH2 to aggregate human platelets and bind to the TXA2/PGH2 receptor. TXA2 was more potent than PGH2 in initiating aggregation in platelet-rich plasma, EC50 of 66 +/- 15 nM and 2.5 +/- 1.3 microM, respectively. In washed platelets, however, PGH2 was more potent than TXA2 with EC50 values of 45 +/- 2 nM and 163 +/- 21 nM, respectively. The affinity of these two compounds in washed platelets was determined in radioligand competition binding assays employing [125I]-PTA-OH. The Kd values for PGH2 and TXA2 were 43 nM and 125 nM, respectively. The results demonstrate that the affinity of PGH2 for the platelet TXA2/PGH2 receptor is greater than previously thought. The data raise the possibility that PGH2 may significantly contribute to the responses attributed to TXA2 in vivo.  相似文献   

3.
The diazonium salt of 9,11-dimethylmethano-11,12-methano-16-(4-aminophenoxy)13,14- dihydro-13-aza-15 alpha beta-omega-tetranor TXA2 (PTA-POA) was synthesized and used as a photoaffinity ligand for the putative human platelet TXA2/PGH2 receptor. Incubation of human platelet membranes with the diazonium salt of PTA-POA followed by photolysis at 290 nm(hv) resulted in a 40% decrease in the specific binding of [125I]PTA-OH as measured in the radioligand binding assay. Co-incubation with a TXA2/PGH2 agonist followed by photolysis resulted in no decrease in specific binding. Incubation of the diazonium salt of PTA-POA with solubilized platelet membranes without photolysis followed by Scatchard analysis resulted in no change in the Kd for [125I]PTA-OH (38 nM) and the preparation which was incubated with the diazonium salt (42 nM). However, the Bmax for [125I]PTA-OH binding was reduced from 2.4 pmole/mg protein for control to 1.4 pmole/mg protein. These studies show that the diazonium salt of PTA-POA may be a useful photoaffinity ligand for human platelet TXA2/PGH2 receptors.  相似文献   

4.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

5.
To further characterize the human thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor, preparative isoelectric focusing (IEF) was performed on solubilized platelet membranes. TXA2/PGH2 receptors, assayed by specific binding of the TXA2/PGH2 antagonist [125I]PTA-OH, were electrofocused at pH 5.6. Scatchard analysis of IEF fraction pH 5.6 revealed a 180-fold concentration of TXA2/PGH2 receptors (Bmax = 3650 +/- 228 pM/mg focused, 19 +/- 4 pM/mg unfocused) with no change in binding affinity (Kd = 47 +/- 7 nM focused, 36 +/- 14 nM unfocused). SDS-polyacrylamide gel electrophoresis of photoaffinity-labelled electrofocused receptors revealed concentration of specifically labelled proteins having molecular masses of 49,000 and 27,000 Daltons. These results suggest that the human platelet TXA2/PGH2 receptor has a pI of 5.6, molecular mass of 49,000 Daltons, and may exist as a dimer. Preparative IEF should prove useful in the eventual purification of this receptor.  相似文献   

6.
Thromboxane A2 (TxA2) and prostaglandin H2 (PGH2) aggregate platelets and contract vascular smooth muscle. Inasmuch as both compounds produce the same effects and presumably through the same receptor, their receptors have been referred to as TxA2/PGH2 receptors. Pharmacological studies of stable agonists and antagonists of the TxA2/PGH2 receptors have shown different rank order potencies for these compounds in platelets compared with blood vessels. These studies have provided evidence to support the hypothesis that the platelet TxA2/PGH2 receptor is different from the one found in vascular tissue. The vascular receptor has been named [TxA2/PGH2]tau and the platelet receptor has been named [TxA2/PGH2]alpha. In the past few years several radiolabeled antagonists and agonists have been developed and used in radioligand-binding studies, primarily in platelets. One of these ligands, 125I-labeled PTA-OH, a TxA2/PGH2 receptor antagonist, has been extensively used to characterize the human platelet TxA2/PGH2-binding site. It has been found to have a Kd of approximately 20 nM and a Bmax of 2500 binding sites/platelet. Through the combination of pharmacological and biochemical approaches, it should be possible to characterize platelet and vascular TxA2/PGH2 receptors.  相似文献   

7.
The binding characteristics of [3H]U46619 to washed human platelets were studied. [3H]U46619 binding to washed human platelets was saturable and displaceable. Kinetic studies yielded a Kd of 11 +/- 4 nM (n = 4). Scatchard analysis of equilibrium binding studies revealed one class of high affinity binding sites with a Kd of 20 +/- 7 nM and a Bmax of 9.1 +/- 2.3 fmole/10(7) platelets (550 +/- 141 binding sites per platelet) (n = 4). A number of compounds that act as either agonists or antagonists of the TXA2/PGH2 receptor were tested for their ability to inhibit the binding of [3H]U46619 to washed human platelets. The Kds of the agonists and antagonists were similar to their potencies to induce or inhibit platelet aggregation. These data provide some evidence that [3H]U46619 binds to the putative human platelet TXA2/PGH2 receptor.  相似文献   

8.
A photoactive iodoarylazide derivative (I-APA-PhN3) of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist 13-azaprostanoic acid is evaluated. Upon photoactivation, the compound was found to inhibit specifically and irreversibly human platelet aggregation induced by the TXA2/PGH2 mimetic U46619. In receptor-binding studies using [3H]U46619, I-APA-PhN3 exhibited an IC50 of 300 nM for inhibition of U46619 binding. Photoactivation of I-APA-PhN3 resulted in an irreversible 58% reduction in specific binding of U46619. This compound and its corresponding ratio-iodinated form will prove to be useful tools for the isolation and purification of the TXA2/PGH2-binding protein in human platelets.  相似文献   

9.
The radiolabeled thromboxane A2/prostaglandin H2 (TXA2/PGH2) agonist 125I-BOP bound to the TXA2/PGH2 receptor on human platelet membranes. Scatchard analysis showed that pretreatment of platelet membranes with the reducing agent dithiothreitol (DTT) (10 mM) for 10 min decreased maximal 125I-BOP binding (Bmax) from 1.51 +/- 0.11 pmol/mg to 0.51 +/- 0.05 pmol/mg (p = 0.001) and increased the affinity of the remaining binding sites (Kd = 647 +/- 64 pM (untreated), 363 +/- 46 pM (treated), p = 0.006). Prolonged incubation of membranes with DTT (10 mM) for 40 min further reduced the Bmax to 0.23 +/- 0.08 pmol/mg (p = 0.001 from untreated), and the binding affinity remained elevated (Kd = 334 +/- 117 pM, p = 0.035 from untreated). Kinetic analysis of 125I-BOP binding indicated that the apparent increase in binding affinity after DTT treatment was due exclusively to an increase in the rate of ligand-receptor association with no change in dissociation rate. The effects of DTT on 125I-BOP binding were dose-dependent with an EC50 of 8.1 +/- 0.2 mM. DTT inactivation of TXA2/PGH2 receptors was time-dependent with a second order rate constant (k2) of 0.123 M-1 s-1 at 20 degrees C. The platelet membrane 125I-BOP binding site was partially protected from DTT inactivation by prior occupation with the ligand. TXA2/PGH2 receptor protection by I-BOP was dose-dependent and linearly related (r = 0.97, p = 0.002) to the proportion of receptors occupied, but was incomplete since agonist occupation of 89% of the total number of receptors resulted in only a 38% protective effect. Inhibition of 125I-BOP binding after reduction with DTT could be made permanent by addition of the sulfhydryl alkylating agent N-ethylmaleimide (25 mM), but was completely reversed by reoxidation with dithionitrobenzoic acid (DTNB) (5 mM). Oxidation of untreated receptors with DTNB resulted in a 64% increase in 125I-BOP binding sites from 1.65 +/- 0.12 pmol/mg to 2.70 +/- 0.08 pmol/mg (p = 0.013) without affecting binding affinity. DTNB-induced increases in 125I-BOP binding were concentration-dependent with an EC50 of 668 +/- 106 microM and occurred in less than 1 min at 37 degrees C. In the absence of DTT, alkylation of free sulfhydryl groups with N-ethylmaleimide reduced 125I-BOP Bmax in platelet membranes to 0.85 +/- 0.08 pmol/mg (p = 0.003), but did not change the affinity of the remaining receptors. The EC50 for N-ethylmaleimide inactivation of TXA2/PGH2 receptors was 139 +/- 8 mM, and the k2 in time course experiments was 0.067 M-1 s-1 at 20 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
We previously demonstrated that nonesterified as well as esterified eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) inhibit U46619-induced platelet aggregation and [3H]U46619 specific binding to washed human platelets. It was also demonstrated that esterification of these fatty acids resulted in a decrease in the affinity of [3H]U46619 for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor. In order to investigate the specificity of this inhibition, the effects of 20:5n-3 and 22:6n-3 on the function and binding of the platelet alpha 2-adrenergic receptor were studied. It was found that neither 20:5n-3 nor 22:6n-3 (nonesterified or esterified) altered epinephrine-induced aggregation or [3H]yohimbine specific binding. Moreover, Scatchard analysis revealed that esterification with either 20:5n-3 or 22:6n-3 did not alter the dissociation constant for [3H]yohimbine binding. Modulation of the TXA2/PGH2 receptor by 20:5n-3 and 22:6n-3 was next evaluated using CHAPS- and digitonin-solubilized platelet membranes. [3H]SQ29,548 dissociation constants of 26.5 nM and 20.8 nM were measured for CHAPS and digitonin-solubilized membranes, respectively. Competitive binding experiments in these solubilized preparations revealed that 20:5n-3 or 22:6n-3 blocked [3H] SQ29,548 binding with IC50 values in the range of 6-15 microM, while concentrations of these fatty acids of up to 100 microM showed no effect on [3H]yohimbine binding. On the other hand, the IC50 values for inhibition of [3H] SQ29,548 binding by linoleic acid (18:2n-6) and gamma-linolenic acid (18:3n-6) were in the range of 150 microM. Furthermore, 18:2n-6 and 18:3n-6 showed similar inhibitory effects on [3H]yohimbine binding. Finally, competition binding studies performed in a partially purified TXA2/PGH2 receptor preparation also demonstrated inhibition of [3H]SQ29,548 binding by 20:5n-3 and 22:6n-3. Collectively, these findings support the notion that 20:5n-3 and 22:6n-3 can selectively and directly modulate TXA2/PGH2 receptor function, and that this mechanism of action may contribute to the antiplatelet activity associated with diets rich in these fatty acids.  相似文献   

11.
We characterized thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors and histamine H1 receptors in Guinea-pig cultured tracheal smooth-muscle cells (TSMC). [3H]SQ 29,548 (a TXA2 antagonist)-binding sites were saturable and a high affinity with a dissociation constant of 6.2 +/- 0.60 nM (mean +/- S.E.) and a receptor density of 46 +/- 4.6 fmol/10(6) cells. [3H]SQ 29548 binding was completely inhibited by TXA2 mimetics or antagonists. Intracellular calcium concentration ([Ca2+]i) in TSMC was increased with U46619 stimulation and the increase was attenuated by TXA2 antagonists, the potencies of which correlated with those inhibiting the activities of the [3H]SQ 29548 binding. [3H]Mepyramine (a H1 antagonist)-binding sites were also present in TSMC. [3H]Mepyramine had a single class of low-affinity-binding sites with a dissociation constant of 2.6 +/- 0.081 microM and a receptor density of 10.6 +/- 0.11 nmol/mg protein. [3H]Mepyramine binding in TSMC membrane was inhibited by H1 antagonists, but not by H2 antagonists. The inhibition constants of mepyramine in TSMC were 910-times lower than those in tracheal membranes. In contrast, the histamine-induced increase in [Ca2+]i in TSMC was inhibited in the presence of low concentrations of H1 antagonists. All these observations provide evidence that TXA2/PGH2 receptors, mepyramine-binding sites and/or H1 receptors are expressed in cultured TSMC.  相似文献   

12.
DuP 753 is a potent, selective angiotensin II type 1 (AT1) receptor antagonist. The possibility was investigated that DuP 753 may crossreact with thromboxane A2/prostaglandin H2 (TP) receptors. DuP 753 inhibited the specific binding of the TP receptor antagonist [3H]SQ 29,548 (5 nM) in human platelets with kd/slope factor values of 9.6 +/- 1.4 microM/1.1 +/- 0.02. The AT2-selective angiotensin receptor ligand, PD 123,177 was a very weak inhibitor of specific [3H]SQ 29,548 binding in platelets (Kd/slope factor:200 microM/0.86). [3H]SQ 29,548 saturation binding in the absence and presence of DuP 753 resulted in an increase in equilibrium affinity constant (Kd: 9.3, 22, 33 nM, respectively) without a concentration-dependent reduction in binding site maxima (Bmax: 3597, 4597, 3109 fmol/mg protein, respectively). Platelet aggregation induced by the TP receptor agonist U 46,619 was concentration-dependently inhibited by DuP 753 (IC50 = 46 microM). These data indicate for the first time that DuP 753 is a weak but competitive antagonist at human platelet TP receptors.  相似文献   

13.
Differences in binding characteristics between agonists and antagonists for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were examined in rat cultured vascular smooth muscle cells (VSMC). Scatchard analysis indicated the existence of two binding sites for the TXA2/PGH2 agonist, whereas a single class of recognition sites for the receptor antagonists were observed with approximately the same maximum binding capacity (Bmax) as a high-affinity binding site of the agonist. Weak binding inhibition by approx. 100 nM of primary prostanoids (PGE1, PGF2 alpha and PGD2) was detected only with the TXA2/PGH2 agonist, and not with the antagonist. Primary prostanoids as well as TXA2/PGH2 agonists (U46619 and STA2) suppressed the [3H]PGF2 alpha and [3H]PGE1 binding with almost the same potency, whereas TXA2/PGH2 antagonists (S-145, SQ29,548 and ONO3708) did not. The Bmax value of the binding sites was roughly identical in PGF2 alpha, PGE1 and a low-affinity binding site of U46619. These results suggest the existence of two binding sites for TXA2/PGH2 in VSMC, i.e., a high-affinity binding site corresponding to that of the TXA2/PGH2 antagonists and a low-affinity binding site in common with primary prostanoids.  相似文献   

14.
A Masuda  P V Halushka 《Life sciences》1991,48(25):2391-2395
The influence of cell density on the binding characteristics of thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors in rat aortic vascular smooth muscle cells in culture were determined using [1S- (1 alpha, 2 beta (5Z), 3a (1E, 3R*), 4 alpha)]- 7 -[3- (3-hydroxy -4- (4'-iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan- 2yl]-5-heptenoic acid (125I-BOP). The Bmax for 125I-BOP was 5,430 +/- 139 sites/cell (26.9 +/- 5.7 fmoles/mg protein) for cells cultured in 1% fetal calf serum and 2809 +/- 830 sites/cell (13.1 +/- 2.2 fmoles/mg protein) for cells cultured in 10% fetal calf serum. Cells were allowed to grow to varying densities and then harvested for assay. There was a negative correlation between the Bmax and the cell density per flask. The Kd for I-BOP did not significantly vary in any of the studies. The results demonstrate that cell density plays an important role in influencing the expression of vascular TXA2/PGH2 receptors.  相似文献   

15.
Thromboxane (TX) A2 effects in the kidneys include contraction of glomerular mesangial cells and intrarenal vascular tissue. A kidney cDNA encoding a TX receptor expressed in rat renal glomeruli and rat renal arterial smooth muscle cells has been reported. However, TXA2 receptors in human kidneys have not been documented. The purpose of this study was to identify and characterize TXA2 receptors in glomeruli and intrarenal arteries isolated from human kidneys. Normal kidneys, not used for transplant because of technical reasons, were kept at -70 degrees C and used for research purposes. The glomeruli and intrarenal arteries were isolated from renal cortical tissue by a mechanical sieving technique. The equilibrium dissociation constant and receptor number were determined by nonlinear analysis of binding inhibition data. The data were generated in radioreceptor assays using [125I]-BOP, a stable analog of TXA2. The dissociation constants (mean +/- SEM) for binding of I-BOP to human glomeruli and intrarenal arterial membranes were 6.6 +/- 1.1 nM (n = 7) and 20 +/- 6 nM (n = 7), respectively (p < 0.05). The receptor number was 311 +/- 91 fmol/mg protein (n = 7) in glomeruli and 74 +/- 16 fmol/mg protein (n = 7) in intrarenal arterial membranes (p < 0.04). The order of specificity of TXA2 analogs for [125I]-BOP binding sites was similar in glomeruli and in arterial membranes and was I-BOP > or = U46619 > or = pinane TXA2 > or = carbocyclic TXA2 > or = PGH2. These findings provide direct evidence for the presence of specific, high-affinity [125I]-BOP binding sites in human renal glomeruli and extraglomerular vascular tissue. These data also indicate that the human binding sites have higher affinity for the TXA2 agonist I-BOP than for PGH2.  相似文献   

16.
Pharmacological evidence has suggested that endothelin-3 (ET-3) may act via a novel form of ET receptor that is shared by ETA receptor antagonists but not by ETB receptor selective agonists. This study analyses the properties of interaction of ET-3 with recombinant bovine ETA receptor. Apparent Kd(ET-3) values as low as 50 nM were defined from [125I]ET-1 binding experiments performed at low (5 microg/ml) protein concentrations in the assays. Larger (up to 1 microM) values were artefactually obtained in experiments performed at larger protein concentrations. The three monoiodo ET-3 derivatives were synthetized. ([125I]Y14)ET-3 did not recognize ETA receptors. ([125I]Y6)ET-3 labelled 18% of [125I]ET-1 binding sites with a Kd value of 320 pM. ([125I]Y13)ET-3 labelled 44% of [125I]ET-1 binding sites with a Kd value of 130 pM. High affinity ([125I]Y6)ET-3 and ([125I]Y13)ET-3 bindings were prevented by ET-1 (Kd = 5-7 pM), ET-3 (Kd = 70-250 pM), BQ-123 (Kd = 2 nM) and FR139317 (Kd = 2 nM) but not by low concentrations of 4-AlaET-1, sarafotoxin S6c or IRL1620. The three monoiodo ET-3 derivatives bound to recombinant rat ETB receptors with a pM affinity. The results suggest that ET-3, ([125I]Y6)ET-3 and ([125I]Y13)ET-3 should not be considered as ETB receptor specific ligands.  相似文献   

17.
Activation of platelet adenylate cyclase by prostaglandin E1 or prostacyclin is initiated through the interaction of the agonists with the same receptors on membrane. Prostaglandin E1/prostacyclin receptors of human platelets were solubilized in buffer, containing 0.05% Triton X-100 and protease inhibitors. The soluble membrane protein was chromatographed on a DEAE-cellulose column and assayed by a microfiber filter by equilibrium binding technique. The active fractions eluted at 0.7 M KCl were pooled, and the receptors were purified to homogeneity by Sephadex G-200 gel filtration with an overall recovery of 30%. The isolated receptor was 2,200-fold purified over the starting platelets. As evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the receptor showed a molecular mass of 190,000 daltons and is composed of two nonidentical subunits with molecular masses of 85,000 and 95,000 daltons. The interaction of prostaglandin E1 with the purified receptor was rapid, saturable, reversible, and highly specific. Among all prostaglandins tested, only prostacyclin was capable of displacing [3H]prostaglandin E1 bound to the receptor. Scatchard analysis of [3H]prostaglandin E1 binding to the purified receptor suggested the presence of a single class of high affinity binding sites (Kd = 9.8 nM) and a second population of low affinity binding sites (Kd = 0.7 microM) in the same protein molecule. Incubation of the purified receptor with platelets stripped of the receptor by washing with low concentrations of Triton X-100 efficiently restored the ability of prostaglandin E1 and prostacyclin to activate adenylate cyclase in these cells.  相似文献   

18.
A photoreactive, radioiodinated derivative of platelet activating factor (PAF), 1-O-(4-azido-2-hydroxy-3-iodobenzamido)undecyl-2-O-acetyl-sn- glycero-3-phosphocholine ([125I]AAGP), was synthesized and used as a photoaffinity probe to study the PAF binding sites in rabbit platelet membranes. The nonradioactive analog, IAAGP, induced rabbit platelet aggregation with an EC50 value of 3.2 +/- 1.9 nM as compared to 0.40 +/- 0.25 nM for PAF. Specific binding of [125I]AAGP to rabbit platelet membranes was saturable with a dissociation constant (Kd) of 2.4 +/- 0.7 nM and a receptor density (Bmax) of 1.1 +/- 0.2 pmol/mg protein. Photoaffinity labeling of platelet membranes with [125I]AAGP revealed several 125I-labeled components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein species with apparent molecular weight of 52,000 was consistently observed and inhibited significantly by unlabeled PAF at nanomolar concentrations. The labeling was specific since the PAF antagonists, SRI-63,675 and L-652,731, at 1 uM also blocked the appearance of this band; whereas lysoPAF was not effective at the same concentration. These results suggest that the binding sites of PAF receptor in rabbit platelets reside in the polypeptide of Mr = 52,000.  相似文献   

19.
While platelets have been shown to be capable of supplying prostaglandin (PG) H2 to endothelial cells in culture for PGI2 synthesis, endothelial cells have been shown unable to supply PGH2 to platelets for thromboxane (TX) A2 synthesis. We incubated rings of the bovine coronary artery (BCAR) with human platelets treated with aspirin (to inhibit cyclooxygenase) or CGS 13080 (to inhibit TXA2 synthase) in the presence of 20 microM arachidonic acid. BCAR, with damaged endothelium, produced significantly less PGI2 than that with intact endothelium. However, co-incubation with CGS 13080-treated platelets resulted in an increase in PGI2 independent of endothelium, demonstrating a shunt of PGH2 from platelets to BCAR. Co-incubation of BCAR with aspirin-treated platelets resulted in a net increase in TXA2 demonstrating a shunt of PGH2 from BCAR to platelets. Employing [14C]PGH2 as substrate, BCAR with and without intact endothelium produced similar amounts of 6-keto-[14C]PGF1 alpha. Likewise, homogenates (50 micrograms protein) of intimal and subintimal regions of BCAR and BCAR converted similar amounts of PGH2 to 6-keto-PGF1 alpha. These data suggest that vascular production of PGH2 is more dependent on an intact endothelium than is the conversion of PGH2 to PGI2. These data also suggest a potential for a bidirectional exchange of PGH2 between platelets and vascular wall during platelet-vascular wall interactions.  相似文献   

20.
This study aimed at testing the hypothesis that the binding sites for TXA2/PGH2 are present and different in the heart as compared to platelets and blood vessels. Kinetic studies on the thromboxane binding to protein of membrane preparations from rabbit and pig hearts were carried out using [125I]-PTA-OH, a potent specific thromboxane receptor antagonist. The following points are stressed: 1. the binding sites to 125I-PTA-OH were shown to be present in the heart membrane whatever the adopted experimental conditions were i.e. the temperature (4 or 30 degrees C) used for incubation the protein fractions under study: either the 105,000 g supernatant or the 200,000 g supernatant of the solubilized pellet (105,000 g) the animal species: rabbit and pig 2. the radioligand binding was rapid, saturable and reversible 3. the kinetically determined Kd's were in the picomolar range--11 and 14 pM for the rabbit and pig heart membrane preparation respectively--instead of the nanomolar range found in other tissues of the nanomolar range found in other tissues--27-39 nM and 2 nM for human platelets and bovine artery endothelial cells respectively- using the same thromboxane receptor antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号