首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The slow growth and highly infectious nature of Mycobacterium tuberculosis is a limiting factor in its use as test organism in high throughput screening for inhibitory compounds. To overcome these problems, use of surrogate strains and reporter genes have been considered. In this study, we have investigated the application of a fast growing nonpathogenic M. aurum expressing firefly luciferase in rapid screening of antituberculosis compounds in vitro and in infected macrophages using bioluminescence assay. The assay is based on luminescence determination using luciferin as substrate. Inhibition of bioluminescence was obtained with frontline antimycobacterial drugs like streptomycin, rifampicin, isoniazid, ethambutol, ofloxacin, and sparfloxacin at their reported MICs. Inhibition could be observed as early as 2 h in vitro and within 24 h in infected macrophages. The system can reliably be used in high throughput screening.  相似文献   

2.
The absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of a candidate drug influence its final clinical success. These properties have traditionally been evaluated by using various in vivo animal approaches, but recently, a number of in vitro and in silico methods have been introduced to determine key ADMET features. Basic events, such as absorption through the gut wall, binding to plasma proteins, active and passive transfer through the blood-brain barrier, and various metabolic parameters, can now be screened with rapid in vitro and computer modelling methods. The focus in this short review is on the basic in vitro and in silico methods that are used for studying the metabolism properties of new drug molecules.  相似文献   

3.
CDP-ME kinase (IspE) contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP) pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens.  相似文献   

4.
Pharmacokinetics and metabolism in early drug discovery.   总被引:5,自引:0,他引:5  
The need for high-throughput approaches in absorption, distribution, metabolism and excretion studies is driven by the impact of high-speed chemistry and pharmacological screening. Perhaps an even greater impact is that these studies will, in the future, provide large data sets that can be used to predict biological events related to absorption, bioavailability and metabolism of drugs. Through linking of in silico and in vitro methods, considerable progress has recently been made towards this future perspective. Despite this progress, these approaches do not yet replace in vivo methods.  相似文献   

5.
6.
Both ligand-based and GPCR privileged scaffold chemical tools have recently emerged to provide new insights into the function and physiology of the GPCR lysophospholipid receptors both in vitro and in vivo. Both rational, design-based approaches as well as hybrid approaches where high throughput screening has been coupled to an understanding of critical molecular interactions have been productive in advancing understanding of physiology and potential therapeutics in this field. It is now feasible to identify reasonably potent and selective small molecules that provide chemical proof-of-concept in vivo directly from high throughput screening. These developments, coupled with the availability of receptor knock-out mice, presage rapid progress in the field.  相似文献   

7.
There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.  相似文献   

8.
The advent of early absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening has increased the attrition rate of weak drug candidates early in the drug-discovery process, and decreased the proportion of compounds failing in clinical trials for ADMET reasons. This paper reviews the history of ADMET screening and its place in pharmaceutical development, and central nervous system drug discovery in particular. Assays that have been developed in response to specific needs and improvements in technology that result in higher throughput and greater accuracy of prediction of human mechanisms of absorption and toxicity are discussed. The paper concludes with the authors' forecast of new models that will better predict human efficacy and toxicity.  相似文献   

9.
Haspin is a serine/threonine kinase that phosphorylates Thr-3 of histone H3 in mitosis that has emerged as a possible cancer therapeutic target. High throughput screening of approximately 140,000 compounds identified the beta-carbolines harmine and harmol as moderately potent haspin kinase inhibitors. Based on information obtained from a structure-activity relationship study previously conducted for an acridine series of haspin inhibitors in conjunction with in silico docking using a recently disclosed crystal structure of the kinase, harmine analogs were designed that resulted in significantly increased haspin kinase inhibitory potency. The harmine derivatives also demonstrated less activity towards DYRK2 compared to the acridine series. In vitro mouse liver microsome stability and kinase profiling of a representative member of the harmine series (42, LDN-211898) are also presented.  相似文献   

10.
Prioritization of compounds based on human hepatotoxicity potential is currently a key unmet need in drug discovery, as it can become a major problem for several lead compounds in later stages of the drug discovery pipeline. The authors report the validation and implementation of a high-content multiparametric cytotoxicity assay based on simultaneous measurement of 8 key cell health indicators associated with nuclear morphology, plasma membrane integrity, mitochondrial function, and cell proliferation. Compounds are prioritized by (a) computing an in vitro safety margin using the minimum cytotoxic concentration (IC(20)) across all 8 indicators and cell-based efficacy data and (b) using the minimal cytotoxic concentration alone to take into account concentration of drug in tissues. Feasibility data using selected compounds, including quinolone antibiotics, thiazolidinediones, and statins, suggest the viability of this approach. To increase overall throughput of compound prioritization, the authors have identified the higher throughput, plate reader-based CyQUANT assay that is similar to the high-content screening (HCS) assay in sensitivity of measuring inhibition of cell proliferation. It is expected that the phenotypic output from the multiparametric HCS assay in combination with other highly sensitive approaches, such as microarray-based expression analysis of toxic signatures, will contribute to a better understanding and predictivity of human hepatotoxicity potential.  相似文献   

11.
后基因组时代药理学研究趋向   总被引:4,自引:0,他引:4  
药理基因组学(药物基因组学,pharmacogenomics)将成为后基因组时代药理学研究的新领域,与此相应,高通量筛选(high-throughput screening,HTS)、in silico研究以及多种功能可视化技术已开始成为药理学研究的新方法,本文同时介绍上述新思路与新方法应用于药效学,药动学研究的某些进展。  相似文献   

12.
Efforts toward improving the predictiveness in tier-based approaches to virtual screening (VS) have mainly focused on protein kinases. Despite their significance as drug targets, small molecule kinases have been rarely tested with these approaches. In this paper, we investigate the efficacy of a pharmacophore screening-combined structure-based docking approach on the human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, an emerging target for cancer chemotherapy. Six out of a total 1364 compounds from NCI’s Diversity Set II were selected as true actives via throughput screening. Using a database constructed from these compounds, five programs were tested for structure-based docking (SBD) performance, the MOE of which showed the highest enrichments and second highest screening rates. Separately, using the same database, pharmacophore screening was performed, reducing 1364 compounds to 287 with no loss in true actives, yielding an enrichment of 4.75. When SBD was retested with the pharmacophore filtered database, 4 of the 5 SBD programs showed significant improvements to enrichment rates at only 2.5% of the database, with a 7-fold decrease in an average VS time. Our results altogether suggest that combinatorial approaches of VS technologies are easily applicable to small molecule kinases and, moreover, that such methods can decrease the variability associated with single-method SBD approaches.  相似文献   

13.
14.
The high throughput in silico screening of a virtual library into the structure of the P. falciparum lactate dehydrogenase (LDH) with the 4SCan technology yielded a series of biphenyl urea compounds. These were chemically optimized to a new structural class of potent antimalarial agents. The compounds did not inhibit plasmodium LDH enough to fully explain their potency. Therefore we conclude that an unknown mode of action may be the cause of the antimalarial activity.  相似文献   

15.
The recently published X-ray structures of the beta(2)-adrenergic receptor are the first examples of ligand-mediated GPCR crystal structures. We have previously performed computational studies that examine the potential viability of these structures for use in drug design, exploiting known ligand activities. Our previous study and a newly reported beta(2)/Timolol X-ray complex provide validation of the computational approaches. In the present work, we use the X-ray structures to extract, via in silico high-throughput docking, compounds from proprietary and commercial databases and demonstrate the successful identification of active compounds by radioligand binding.  相似文献   

16.
A series of pyrazole inhibitors of the human FPR1 receptor have been identified from high throughput screening. The compounds demonstrate potent inhibition in human neutrophils and attractive physicochemical and in vitro DMPK profiles to be of further interest.  相似文献   

17.
Guanine deaminase (GDA; cypin) is an important metalloenzyme that processes the first step in purine catabolism, converting guanine to xanthine by hydrolytic deamination. In higher eukaryotes, GDA also plays an important role in the development of neuronal morphology by regulating dendritic arborization. In addition to its role in the maturing brain, GDA is thought to be involved in proper liver function since increased levels of GDA activity have been correlated with liver disease and transplant rejection. Although mammalian GDA is an attractive and potential drug target for treatment of both liver diseases and cognitive disorders, prospective novel inhibitors and/or activators of this enzyme have not been actively pursued. In this study, we employed the combination of protein structure analysis and experimental kinetic studies to seek novel potential ligands for human guanine deaminase. Using virtual screening and biochemical analysis, we identified common small molecule compounds that demonstrate a higher binding affinity to GDA than does guanine. In vitro analysis demonstrates that these compounds inhibit guanine deamination, and more surprisingly, affect GDA (cypin)-mediated microtubule assembly. The results in this study provide evidence that an in silico drug discovery strategy coupled with in vitro validation assays can be successfully implemented to discover compounds that may possess therapeutic value for the treatment of diseases and disorders where GDA activity is abnormal.  相似文献   

18.
The bacterial protein tyrosine phosphatase YopH is an essential virulence determinant in Yersinia pestis and a potential antibacterial drug target. Here we report our studies of screening for small molecule inhibitors of YopH using both high throughput and in silico approaches. The identified inhibitors represent a diversity of chemotypes and novel pTyr mimetics, providing a starting point for further development and fragment-based design of multi-site binding inhibitors. We demonstrate that the applications of high throughput and virtual screening, when guided by structural binding mode analysis, is an effective approach for identifying potent and selective inhibitors of YopH and other protein phosphatases for rational drug design.  相似文献   

19.
Modeling the local absorption and retention patterns of membrane-permeant small molecules in a cellular context could facilitate development of site-directed chemical agents for bioimaging or therapeutic applications. Here, we present an integrative approach to this problem, combining in silico computational models, in vitro cell based assays and in vivo biodistribution studies. To target small molecule probes to the epithelial cells of the upper airways, a multiscale computational model of the lung was first used as a screening tool, in silico. Following virtual screening, cell monolayers differentiated on microfabricated pore arrays and multilayer cultures of primary human bronchial epithelial cells differentiated in an air-liquid interface were used to test the local absorption and intracellular retention patterns of selected probes, in vitro. Lastly, experiments involving visualization of bioimaging probe distribution in the lungs after local and systemic administration were used to test the relevance of computational models and cell-based assays, in vivo. The results of in vivo experiments were consistent with the results of in silico simulations, indicating that mitochondrial accumulation of membrane permeant, hydrophilic cations can be used to maximize local exposure and retention, specifically in the upper airways after intratracheal administration.  相似文献   

20.
The development of new therapeutic leads against leishmaniasis relies primarily on screening of a large number of compounds on multiplication of clinically irrelevant transgenic promastigotes. The advent of the successful in vitro culture of axenic amastigotes allows the development of transgenic axenic amastigotes as a primary screen which can test compounds in a high throughput mode like promastigotes, still representative of the clinically relevant mammalian amastigotes stage. The present study reports the development of luciferase-tagged axenic amastigotes of Leishmania donovani, the causative agent of Indian Kala-azar, for in vitro drug screening. Luciferase expressing promastigotes were transformed to axenic amastigotes at a low pH and high temperature without the loss of luciferase expression. As compared to transgenic promastigotes, the luciferase expressing axenic amastigotes exhibited more sensitivity to antileishmanial drugs, particularly to pentavalent antimony (~2.8-fold) and also to the test compounds. Hence, the developed luciferase expressing axenic amastigotes make an ideal choice for high throughput drug screening for antileishmanial compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号