首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyaluronan and versican-rich pericellular matrices form around arterial smooth muscle cells (ASMC) preferentially during the detachment phase of proliferation and migration. PDGF is a potent mitogen and chemotactic agent for ASMC and also stimulates the production of extracellular matrix molecules which may regulate the proliferative and migratory capacity of the cells. We have examined the effect of PDGF on the formation of hyaluronan-dependent pericellular matrices, and on the synthesis and interaction of several major pericellular coat constituents. As demonstrated using a particle exclusion assay, PDGF stimulated the formation of pericellular matrices and was seen both in an increased proportion of cells with a coat and a greater coat size. This increase was accompanied by a transient increase in hyaluronan synthase 2 (HAS2) expression and an increase in hyaluronan synthesis and polymer length. PDGF also increased the synthesis of versican and link protein as measured at the mRNA and protein levels. The amount of native versican-hyaluronan aggregates and link-stabilized aggregate was also increased following PDGF treatment. Time lapse imaging showed that pericellular matrix formation occurred around trailing cell processes prior to their detachment. These data suggest that PDGF modulates the synthesis and organization of ASMC pericellular coat-forming molecules such as versican, hyaluronan, and link protein, which leads to extracellular matrix expansion and alterations in ASMC phenotype.  相似文献   

2.
Versican is an extracellular matrix proteoglycan produced by many cells. Although versican is generally known as a large chondroitin sulfate proteoglycan (CSPG), the smallest splice variant, V3, consists only of the amino- and carboxy-terminal globular domains and is therefore predicted to be a small glycoprotein, lacking CS chains. The large size, negative charge, and ability of versican variants to form pericellular coats with hyaluronan are responsible for many of its effects. V3, lacking the large size and high charge density, but retaining the hyaluronan-binding domain of the larger isoforms, may have different effects on cell phenotype. To determine whether V3 alters cell phenotype, Fisher rat arterial smooth muscle cells (ASMCs), which express the larger CSPG versican splice forms (V0 and V1) were retrovirally transduced with the rat V3 cDNA. Northern analysis for versican RNAs confirmed that cells transduced with V3 retrovirus, but not cells tranduced with the empty vector, expressed RNA of the size expected for V3/neo(r) bicistronic RNA. V3 overexpressing cells were more spread on tissue culture plastic, had a smaller length-to-breadth ratio and were more resistant to release from the culture dish by trypsin. Interference reflection microscopy of sparsely plated cells showed larger areas of close contact between the V3 expressing cells and the coverslip, in comparison to control cells. Focal contacts in the periphery of V3 expressing cells were larger. Growth and migration studies revealed that V3 transduced cells grow slower and migrate a shorter distance in a scratch wound assay. The increased adhesion and the inhibition of migration and proliferation resulting from V3 overexpression are the opposites of the known and predicted effects of the other variants of versican. V3 may exert these effects through changes in pericellular coat formation, either by competing with larger isoforms for hyaluronan-binding, or by altering other components of the pericellular matrix.  相似文献   

3.
4.
Link protein has greater affinity for versican than aggrecan   总被引:6,自引:0,他引:6  
The function of link protein in stabilizing the interaction between aggrecan and hyaluronan to form aggrecan aggregates, via the binding of link protein to the aggrecan G1 domain and hyaluronan, is well established. However, it is not known whether link protein can function with similar avidity with versican, another member of the large hyaluronan-binding proteoglycan family that also binds to hyaluronan via its G1 domain. To address this issue, we have compared the interaction of the versican and aggrecan G1 domains with link protein and hyaluronan using recombinant proteins expressed in insect cells and BIAcore analysis. The results showed that link protein could significantly improve the binding of both G1 domains to hyaluronan and that its interaction with VG1 is of a higher affinity than that with AG1. These observations suggest that link protein may function as a stabilizer of the interaction, not only between aggrecan and hyaluronan in cartilage, but also between versican and hyaluronan in many tissues.  相似文献   

5.
Leiomyosarcoma (LMS) is a mesenchymal cancer that occurs throughout the body. Although LMS is easily recognized histopathologically, the cause of the disease remains unknown. Versican, an extracellular matrix proteoglycan, increases in LMS. Microarray analyses of 80 LMSs and 24 leiomyomas showed a significant elevated expression of versican in human LMS versus benign leiomyomas. To explore the importance of versican in this smooth muscle cell tumor, we used versican-directed siRNA to knock down versican expression in a LMS human cell line, SK-LMS-1. Decreased versican expression was accompanied by slower rates of LMS cell proliferation and migration, increased adhesion, and decreased accumulation of the extracellular matrix macromolecule hyaluronan. Addition of purified versican to cells expressing versican siRNA restored cell proliferation to the level of LMS controls, increased the pericellular coat and the retention of hyaluronan, and decreased cell adhesion in a dose-dependent manner. The presence of versican was not only synergistic with hyaluronan in increasing cell proliferation, but the depletion of versican decreased hyaluronan synthase expression and decreased the retention of hyaluronan. When LMS cells stably expressing versican siRNA were injected into nude mice, the resulting tumors displayed significantly less versican and hyaluronan staining, had lower volumes, and had reduced levels of mitosis as compared with controls. Collectively, these results suggest a role for using versican as a point of control in the management and treatment of LMS.  相似文献   

6.
The expression and distribution of types 1, 2, and 3 inositol 1,4, 5-trisphosphate receptor (InsP(3)R) in proliferating, primary cultures of rat aortic smooth muscle were compared to fully developed and differentiated rat aortic smooth muscle. Subtype-specific InsP(3)R antibodies revealed that the expression of type 1 InsP(3)R was similar in cultured aortic cells and aorta homogenate but expression of type 2 and 3 InsP(3)R subtypes was increased 3-fold in cultured aortic cells. The distribution of the type 1 InsP(3)R was located throughout the cytoplasm; type 2 InsP(3)R was found closely associated with the nucleus and at the plasma membrane; type 3 InsP(3)R was distributed predominantly around the nucleus. Alterations in InsP(3)R subtype expression and localization may have important functions in regulating intracellular calcium release around the nucleus when vascular smooth muscle cells switch to a more proliferating phenotype.  相似文献   

7.
8.
Skeletal development is a tightly regulated process and requires proper communication between the cells for efficient exchange of information. Analysis of fin length mutants has revealed that the gap junction protein Connexin43 (Cx43) coordinates cell proliferation (growth) and joint formation (patterning) during zebrafish caudal fin regeneration. Previous studies have shown that the extra cellular matrix (ECM) protein Hyaluronan and Proteoglycan Link Protein1a (Hapln1a) is molecularly and functionally downstream of Cx43, and that hapln1a knockdown leads to reduction of the glycosaminoglycan hyaluronan. Here we find that the proteoglycan aggrecan is similarly reduced following Hapln1a knockdown. Notably, we demonstrate that both hyaluronan and aggrecan are required for growth and patterning. Moreover, we provide evidence that the Hapln1a-ECM stabilizes the secreted growth factor Semaphorin3d (Sema3d), which has been independently shown to mediate Cx43 dependent phenotypes during regeneration. Double knockdown of hapln1a and sema3d reveal synergistic interactions. Further, hapln1a knockdown phenotypes were rescued by Sema3d overexpression. Therefore, Hapln1a maintains the composition of specific components of the ECM, which appears to be required for the stabilization of at least one growth factor, Sema3d. We propose that the Hapln1a dependent ECM provides the required conditions for Sema3d stabilization and function. Interactions between the ECM and signaling molecules are complex and our study demonstrates the requirement for components of the Hapln1a-ECM for Sema3d signal transduction.  相似文献   

9.
10.
11.
PURPOSE OF REVIEW: Cardiovascular disease affects millions of people worldwide, while the sarcoglycan deficient cardiomyopathies are rare disorders. One important common feature, however, is the vascular smooth muscle. Here we focus on the roles of extracellular matrix components and their receptors in the functions of vascular smooth muscle cells. RECENT FINDINGS: Recent observations highlight the importance of integrins and the dystrophin-glycoprotein complex in development and cardiomyopathy. For example, integrin alpha4 and alpha7 subunits are important for distributing vascular smooth muscle cells during blood vessel development. Studies on delta-sarcoglycan deficient animals have revealed abnormal vascular smooth muscle proliferation and apoptosis. Furthermore, data suggest that perlecan, by affecting smooth muscle cell proliferation, participates in the atherosclerotic process. Overexpression of decorin leads to reduced progression of atherosclerosis and thrombospondin-1 has been implicated in regulation of smooth muscle cell contractility via inhibition of nitric oxide. Novel findings on versican suggest that the binding of versican to fibulin is of great importance for regulating smooth muscle cell function. SUMMARY: By regulating migration, proliferation and apoptosis as well as extracellular matrix synthesis and assembly, proteoglycans, integrins and the dystrophin-glycoprotein complex may be of great importance both during development and in vascular disease.  相似文献   

12.
Previous studies have demonstrated that high levels of hyaluronan (HA) and the chondroitin sulfate proteoglycan, versican in the peritumoral stroma are associated with metastatic spread of clinical prostate cancer. In vitro integration of HA and versican into a pericellular sheath is a prerequisite for proliferation and migration of vascular smooth muscle cells. In this study, a particle exclusion assay was used to determine whether human prostate cancer cell lines are capable of assembling a pericellular sheath following treatment with versican-containing medium and whether formation of a pericellular sheath modulated cell motility. PC3 and DU145, but not LNCaP cells formed prominent polarized pericellular sheaths following treatment with prostate fibroblast-conditioned medium. The capacity to assemble a pericellular sheath correlated with the ability to express membranous HA receptor, CD44. HA and versican histochemical staining were observed surrounding PC3 and DU145 cells following treatment with prostatic fibroblast-conditioned medium. The dependence on HA for integrity of the pericellular sheath was demonstrated by its removal following treatment with hyaluronidase. Purified versican or conditioned medium from Chinese hamster ovary K1 cells overexpressing versican V1, but not conditioned medium from parental cells, promoted pericellular sheath formation and motility of PC3 cells. Using time lapse microscopy, motile PC3 cells treated with versican but not non-motile cells exhibited a polar pericellular sheath. Polar pericellular sheath was particularly evident at the trailing edge but was excluded from the leading edge of PC3 cells. These studies indicate that prostate cancer cells recruit stromal components to remodel their pericellular environment and promote their motility.  相似文献   

13.
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan in the extracellular matrix, and is expressed at high levels in tissues during development and remodeling in pathological conditions. Its core protein is cleaved at a region close to the N-terminal end of CSβ domain by several members of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, i.e., ADAMTS-1, 4, 5, 9, 15, and 20. Here, using a CRISPR/Cas9 system, we generated knock-in mice (V1R), which express an ADAMTS cleavage-resistant versican. Some V1R homozygote mice, termed R/R, exhibit syndactyly and organ hemorrhage. In wound healing experiments, R/R wound shows accumulation of versican and activated TGFβ-signaling in the early stage, leading to faster healing than wild type wound. Immunostaining for Ki67, CD31, smooth muscle α-actin, periostin demonstrates higher levels of overall cell proliferation and an increased number of endothelial cells and myofibroblasts. Immunostaining for CD11b and qRT-PCR for macrophage markers revealed increased levels of inflammatory cell infiltration, especially those of M1 macrophages. Cultured R/R dermal fibroblasts revealed increased deposition of versican, type I and III collagens, and hyaluronan, and upregulation of Smad2/3 signaling. Taken together, these results demonstrate that the cleavage site determines versican turnover and that versican plays a central role in the provisional matrix during the wound repair.  相似文献   

14.
Lee CK  Park HJ  So HH  Kim HJ  Lee KS  Choi WS  Lee HM  Won KJ  Yoon TJ  Park TK  Kim B 《Proteomics》2006,6(24):6455-6475
We used 2-DE and MALDI-TOF/TOF to identify proteins of vascular smooth muscle cells whose expression was or was not altered by exposure to 500 microM H2O2 for 30 min. We detected more than 800 proteins on silver-stained gels of whole protein extracts from rat aortic smooth muscle strips. Of these proteins, 135 clearly unaffected and 19 having levels altered by exposure to H2O2 were identified. Protein characterization revealed that the most prominent vascular smooth muscle proteins were those with antioxidant, cytoskeletal structure, or muscle contraction. In addition, cofilin, an isoform of the actin depolymerizing factor family, shifted to its basic site on the 2-DE gel as a result of H2O2 treatment. In Western blot analysis of proteins from A7r5 aortic smooth muscle cells, the phosphorylation, but not the expression, of cofilin was decreased by H2O2 in a dose-dependent manner. The H2O2-induced dephosphorylation of cofilin and apoptosis was inhibited by Na3VO4, an inhibitor of protein tyrosine phosphatase (PTP). These results suggest that cofilin is one of the proteins regulated by H2O2 treatment in vascular smooth muscle, and has an important role in the induction of vascular apoptosis through PTP-dependent mechanisms.  相似文献   

15.
In the mechanically active environment of the artery, cells sense mechanical stimuli and regulate extracellular matrix structure. In this study, we explored the changes in synthesis of proteoglycans by vascular smooth muscle cells in response to precisely controlled mechanical strains. Strain increased mRNA for versican (3.2-fold), biglycan (2.0-fold), and perlecan (2.0-fold), whereas decorin mRNA levels decreased to a third of control levels. Strain also increased versican, biglycan, and perlecan core proteins, with a concomitant decrease in decorin core protein. Deformation did not alter the hydrodynamic size of proteoglycans as evidenced by molecular sieve chromatography but increased sulfate incorporation in both chondroitin/dermatan sulfate proteoglycans and heparan sulfate proteoglycans (p < 0.05 for both). Using DNA microarrays, we also identified the gene for the hyaluronan-linking protein TSG6 as mechanically induced in smooth muscle cells. Northern analysis confirmed a 4.0-fold increase in steady state mRNA for TSG6 following deformation. Size exclusion chromatography under associative conditions showed that versican-hyaluronan aggregation was enhanced following deformation. These data demonstrate that mechanical deformation increases specific vascular smooth muscle cell proteoglycan synthesis and aggregation, indicating a highly coordinated extracellular matrix response to biomechanical stimulation.  相似文献   

16.
Neurochemical Research - Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus...  相似文献   

17.
Extracellular matrix plays a dynamic role during the process of wound healing, embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an excellent model to study tissue and skeletal regeneration. We have analyzed the expression pattern of some of the well characterized ECM proteins during the process of caudal fin regeneration in zebrafish. Our results show that a transitional matrix analogous to the one formed during newt skeletal and heart muscle regeneration is synthesized during fin regeneration. Here we demonstrate that a provisional matrix rich in hyaluronic acid, tenascin C, and fibronectin is synthesized following amputation. Additionally, we observed that the link protein Hapln1a dependent ECM, consisting of Hapln1a, hyaluronan and proteoglycan aggrecan, is upregulated during fin regeneration. Laminin, the protein characteristic of differentiated tissues, showed only modest change in the expression pattern. Our findings on zebrafish fin regeneration implicates that changes in the extracellular milieu represent an evolutionarily conserved mechanism that proceeds during tissue regeneration, yet with distinct players depending on the type of tissue that is involved.  相似文献   

18.
Monocyte/macrophage accumulation plays a critical role during progression of cardiovascular diseases, such as atherosclerosis. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by arterial smooth muscle cells (ASMCs) decreases monocyte adhesion in vitro and macrophage accumulation in a model of lipid-induced neointimal formation in vivo. We now demonstrate that V3-expressing ASMCs resist monocyte adhesion by altering the composition of the microenvironment surrounding the cells by affecting multiple signaling pathways. Reduction of monocyte adhesion to V3-expressing ASMCs is due to the generation of an extracellular matrix enriched in elastic fibers and depleted in hyaluronan, and reduction of the proinflammatory cell surface vascular cell adhesion molecule 1 (VCAM1). Blocking these changes reverses the protective effect of V3 on monocyte adhesion. The enhanced elastogenesis induced by V3 expression is mediated by TGFβ signaling, whereas the reduction in hyaluronan cable formation induced by V3 expression is mediated by the blockade of epidermal growth factor receptor and NFκB activation pathways. In addition, expression of V3 by ASMCs induced a marked decrease in NFκB-responsive proinflammatory cell surface molecules that mediate monocyte adhesion, such as VCAM1. Overall, these results indicate that V3 expression by ASMCs creates a microenvironment resistant to monocyte adhesion via differentially regulating multiple signaling pathways.  相似文献   

19.
CTRP3 (C1q and tumour necrosis factor‐related protein 3)/cartducin, a novel serum protein, is a member of the CTRP superfamily. Although the CTRP3/cartducin gene is markedly up‐regulated in rat carotid arteries after balloon injury, little is known about its biological roles in arterial remodelling and neointima formation in injured blood vessels. We have investigated the mechanisms underlying CTRP3/cartducin up‐regulation and the in vitro effects of CTRP3/cartducin on vascular smooth muscle cells. CTRP3/cartducin expression in cultured p53LMAC01 vascular smooth muscle cells was induced by TGF‐β1 (transforming growth factor‐β1), but not by bFGF (basic fibroblast growth factor) or PDGF‐BB (platelet‐derived growth factor‐BB). Exogenous CTRP3/cartducin promoted the proliferation of p53LMAC01 cells in a dose‐dependent manner via ERK1/2 (extracellular signal‐regulated kinase 1/2)‐ and MAPK (p38 mitogen‐activated protein kinase)‐signalling pathways. In contrast, CTRP3/cartducin exhibited no effect on the migration of p53LMAC01 cells. Taken together, the results of the present study demonstrate a novel biological role of CTRP3/cartducin in promoting vascular smooth muscle cell proliferation in blood vessel walls after injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号