首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat   总被引:18,自引:0,他引:18  
Summary Perfusion of rat brain followed by immersion fixation with 2.5% glutaraldehyde-1% paraformaldehyde, purification of the first antisera and application of the unlabelled antibody enzyme method were used to specifically identify vasopressin and oxytocin containing cells and fibres. The conventional sites of production of these hormones were confirmed as follows: supraoptic and paraventricular nuclei, suprachiasmatic nucleus (only vasopressin), and other cells and cell groups of the hypothalamus. Fibres from the suprachiasmatic nucleus spread out in various directions, and probably project to the nucleus praeopticus periventricularis, organum vasculosum laminae terminalis and in the direction of the supraoptic nucleus. Oxytocin and vasopressin containing pathways could be traced from the paraventricular nucleus to the lateral ventricle, the stria terminalis and the stria medullaris. Some of the oxytocin and vasopressin containing tracts appear to continue onto the septum. The possible importance of these morphological findings for the behavioural effects of vasopressin and oxytocin is discussed.The authors wish to thank Dr. L. Sternberger for his generous gift of peroxidase-antiperoxidase complex, and Miss M.M. Smidt, Mr. A. Potjer and Mr. P. Wolters for their assistance. This work was supported in part by the Foundation for Medical Research FUNGO  相似文献   

2.
Summary The classical areas for arginine-vasopressin (AVP) synthesis are the magnocellular supraoptic (SON) and paraventricular nuclei. More recently AVP was also demonstrated in neurons of the parvocellular suprachiasmatic nucleus (SCN) of the rat. This result was substantiated in the present study by means of immunoelectron microscopy, by subjecting sections to antivasopressin plasma. Conventional electron microscopy revealed dense-core vesicles in the SCN cell bodies and fibres (mean diameter 94.7±0.9 nm and 84.0±1.1 nm respectively). These vesicles were infrequent within the cell bodies and could not be accumulated by ethanol administration. Immunoelectron microscopy showed a positive reaction in the cell bodies and fibres within vesicles of 93.7±1.1 nm and 98.5±1.2 nm respectively. By comparison, the cell bodies and fibres of the SON showed immunoreactive granules of 143.0±1.8 and 147.3±1.8 nm respectively. The presence in the SCN of AVP in vesicles of different size than those in the SON suggests that synthesis of this substance is indeed occurring within the SCN cells.Supported by The Foundation for Medical Research FUNGOThe authors wish to thank Dr. L.A. Sternberger (Edgewood Arsenal, Md., U.S.A.) for the peroxidase-anti-peroxidase complex, Dr. J.G. Streefkerk (Free University, Amsterdam) and the members of our project group Neuroendocrinology for their suggestions, Mr. P.S. Wolters and Miss A. van der Veiden for their skilled assistance  相似文献   

3.
Summary With the use of tissue prepared by freeze-substitution and the unlabelled antibody enzyme technique, neurophysin and vasopressin were localized at the ultrastructural level in the posterior pituitary and median eminence of the guinea pig. In the posterior pituitary neurophysin was found in the large neurosecretory granules (1300–1500 Å) of axons, Herring bodies, and nerve terminals. In some of these axons immunoreactive neurophysin was found outside of granules in the axoplasm. By light microscopy neurophysin was found in both the zona interna and zona externa of the median eminence; this was confirmed by electron microscopy. In the zona interna as in the posterior pituitary, neurophysin was localized both inside and outside the large neurosecretory granules. In the zona externa, immunoreactive deposit was primarily located in granules with a diameter of 900–1100 Å in nerve terminals abutting on the primary portal plexus. The distribution of vasopressin paralleled that of neurophysin except that the hormone was rarely extragranular. These results demonstrate for the first time that both neurophysin and vasopressin are present in granules of axons that are in contact with the hypophysial portal vasculature.The authors wish to thank Dr. Alan Robinson for the gifts of antiserum to bovine neurophysin I and for purified bovine neurophysin I; Dr. Ludwig Sternberger for the peroxidase-anti-peroxidase complex; and Dr. Robert Utiger for antiserum to lysine vasopressinSupported in part by U.S. Public Health Service grant RR-00167 to the Wisconsin Regional Primate Research Center from the National Institutes of Health. Primate Center publication No. 14-017.Recipient of NIH, NINDS Teacher-Investigator Award NS-1108.  相似文献   

4.
Summary Vasopressin-containing neurons, identified by immunocytochemistry, are located predominantly in the posterior magnocellular division of the paraventricular nucleus of the rat hypothalamus. By electron microscopy, the immunoreaction product is seen within the cell bodies and neuronal processes. In the perikarya and dendritic processes, the immunoreactive material is associated primarily with neurosecretory granules. Axonal processes, identified by their content of microtubules and accumulation of neurosecretory granules, show the immunoreaction product in association with both of these organelles. Afferent axo-dendritic, axo-somatic and putative axo-axonic synapses with immunostained vasopressinergic neurons can be identified. The presynaptic profiles do not contain immunoreactive material. This study contributes to the ultrastructural characterization of vasopressinergic neurons in the paraventricular nucleus and of their afferent synaptic input.Supported by NIH Grants HD-12956 and 2SO7RR05403  相似文献   

5.
The role of apoptotic signaling proteins for long-lived neurons in the mature brain is poorly understood. Recently, we have shown that water deprivation leads to the activation of vasopressin (VP) secretion and expression of Bcl-2 and caspase-9 apototic proteins in the hypothalamus of the rat brain. In the present work, we continued to study a possible relationship between the functional activity of neurosecretory cells of the hypothalamus and apoptosis related proteins. We found that water deprivation leads to simultaneous activation of synthesis of VP and p53 and Bcl-2 apoptotic proteins in the mouse brain. To study a possible effect of apoptotic proteins on the functional state of hypothalamic neurons, the VP and tyrosine hydroxylase (TH) synthesis were analyzed in p53, p21Waf1/Cip1 and Bcl-2 deficient mice. Loss of p53 and Bcl-2 significantly reduced VP synthesis in paraventricular and supraoptic nuclei and TH expression in arcuat, periventricular and zona incerta nuclei of the hypothalamus. Surprisingly, in contrast with the loss of p53, the inactivation of p21Waf1/Cip1 up-regulates the expression of VP and TH. These data indicate that p53, p21Waf1/Cip1 and Bcl-2 proteins, besides affecting cell cycle, tumor suppression and apoptosis, may act as modulators of neurosecretory activity of hypothalamic neurons; however, this problem remains to be determined more detailed.  相似文献   

6.
Summary An immunoelectronmicroscopic method for the specific localization of neurohypophyseal hormones was developed in neurohypophyses of Wistar and Brattleboro rats, the latter strain being homozygous for diabetes insipidus. If the proper precautions were omitted, a marked cross reactivity between antivasopressin and antioxytocin preparations was found. Cross reaction of an antivasopressin plasma with oxytocin, at a dilution of less than 11600, resulted in electron density of all granules within neurosecretory fibres of the Brattleboro and Wistar neurohypophyses. However, this cross reactivity could be eliminated either by sufficient dilution of the antiplasma, or by its purification. Purification of the antibodies was performed by absorption to agarose beads coated with the cross reacting component. Upon incubation with antivasopressin (diluted unpurified 11600 or purified 180) and unpurified antioxytocin (1400) plasma, sections of a Wistar neurohypophysis revealed two types of neurosecretory fibres, containing either electron dense or lucent granules. Oxytocin and vasopressin containing neurosecretory fibres were found as clusters in the neurohypophysis. The specificity of both unpurified antivasopressin (11600) and antioxytocin (1400) plasma was confirmed on serial sections of a Wistar neurohypophysis, alternately incubated with the solutions of the two antibodies.These data prove that the one-cell-one-hormone hypothesis holds true for the hypothalamic-neurohypophyseal system.The authors wish to thank Dr. L.A. Sternberger (Edgewood Arsenal, Md., U.S.A.) for the peroxidase-anti-peroxidase complex, Dr. J.G. Streefkerk (Free University, Amsterdam) and the members of our project group on neuroendocrinology for their suggestions and critical remarks, and Mrs. M. Mud, Mr. P. Wolters and Mrs. A. van der Velden for their skilful assistance  相似文献   

7.
Summary The compositional distributions of coding sequences and DNA molecules (in the 50-100-kb range) are remarkably narrower in murids (rat and mouse) compared to humans (as well as to all other mammals explored so far). In murids, both distributions begin at higher and end at lower GC values. A comparison of homologous coding sequences from murids and humans revealed that their different compositional distributions are due to differences in GC levels in all three codon positions, particularly of genes located at both ends of the distribution. In turn, these differences are responsible for differences in both codon usage and amino acids. When GC levels at first+second codon positions and third codon positions, respectively, of murid genes are plotted against corresponding GC levels of homologous human genes, linear relationships (with very high correlation coefficients and slopes of about 0.78 and 0.60, respectively) are found. This indicates a conservation of the order of GC levels in homologous genes from humans and murids. (The same comparison for mouse and rat genes indicates a conservation of GC levels of homologous genes.) A similar linear relationship was observed when plotting GC levels of corresponding DNA fractions (as obtained by density gradient centrifugation in the presence of a sequence-specific ligand) from mouse and human. These findings indicate that orderly compositional changes affecting not only coding sequences but also noncoding sequences took place since the divergence of murids. Such directional fixations of mutations point to the existence of selective pressures affecting the genome as a whole.  相似文献   

8.
Coexistence of NADPH-diaphorase with vasopressin and oxytocin was studied in the magnocellular neurosecretory nuclei of the rat hypothalamus by use of sequential histochemical and immunocytochemical techniques in the same sections. Coexistence was found in all the nuclei examined (supraoptic, paraventricular, circular, fornical, and in some isolated neurons located in the hypothalamic area between the paraventricular and supraoptic nuclei). The ratios of neurons expressing both markers (NADPH-diaphorase and vasopressin, NADPH-diaphorase and oxytocin) in each of the nuclei were very similar. Although further studies must be carried out, the partial coexistence found in all nuclei suggests that NADPH-diaphorase is probably not related to general mechanisms involving vasopressin and oxytocin, but rather in specific functions shared by certain hypothalamic neuronal cell populations.  相似文献   

9.
Previous experiments showed that rats injected with vasopressin (AVP) during the first seven days after birth were less sensitive as adults to the antidiuretic effects of AVP than were control rats. In the present experiment, binding sites for AVP were measured in the kidneys of similarly treated adult rats. Neonatal exposure to AVP significantly decreased the number of binding sites in the adults, but did not affect the binding affinity of the sites. It is concluded that neonatal exposure to AVP which produces a long-lasting decrease in responsiveness of the kidney to AVP is correlated with a reduction in the number of AVP binding sites in the tissue.  相似文献   

10.
Summary CP-14, a tetradecapeptide from the predicted mutant vasopressin precursor in the homozygous Brattleboro rat was detected immunocytochemically in the supraoptic nucleus of homozygous Brattleboro but not normal rats. The staining was localized to the periphery of the perikarya. CP-14 immunoreactivity was not found in the neural lobes, paraventricular nuclei, accessory nuclei or suprachiasmatic nuclei of either homozygous Brattleboro or normal rats. Vasopressin immunoreactivity was found in the neural lobe and in the perinuclear region of neurons of the supraoptic, paraventricular, suprachiasmatic and accessory nuclei of normal rats. Vasopressin immunoreactivity was also found in homozygous Brattleboro rats, mainly in the ventral part of the supraoptic nucleus: densely stained solitary cells were found amongst other faintly stained perikarya. In both cell-types the staining was mainly in the periphery of the perikarya. No vasopressin immunoreactivity was detected in the paraventricular nuclei, suprachiasmatic nuclei, accessory nuclei or neural lobe of homozygous Brattleboro rats.CP-14 and vasopressin immunoreactivities were found to be co-localized; both were present in the periphery of the same perikarya of the supraoptic nuclei of homozygous Brattleboro rats. Differential staining was found with antioxytocin serum in both normal rats and homozygous Brattleboro rats: separate neurons were stained for either oxytocin or vasopressin and CP-14. Immunoreactive oxytocin was found mainly in the perinuclear region of the neurons from the supraoptic, paraventricular and accessory nuclei.  相似文献   

11.
Summary The extensive distribution of exohypothalamic vasopressin or oxytocin containing nerve fibres is thought to be the anatomical basis for the involvement of these neuropeptides in central processes. Following light microscopic observations suggesting that these fibres terminate on other neurons, the present study was undertaken to demonstrate the existence of such endings in the limbic system, which is one of the main target areas for these peptides. For immunoelectron microscopy glutaraldehyde-paraformaldehyde perfused brains of male Wistar rats and Brattleboro rats, homozygous for diabetes insipidus, with and without postfixation in OsO4, were used. Post-embedding staining revealed false positive reaction product on all dense core vesicles, e.g., in the lateral septum. With pre-embedding staining, however, intense and specific reactions were observed for both vasopressin and oxytocin at their sites of production, as well as the neurohypophysis and in the extrahypothalamic limbic brain regions.In the lateral septum and habenular nucleus only vasopressin-containing synapses could be demonstrated, while in the medial nucleus of the amygdala synapses containing either vasopressin or oxytocin were observed. These peptide containing synapses do not seem to differ in any fundamental way from the classical transmitter-containing synapses in the brain.Supported by the Foundation for Medical Research FUNGOThe authors wish to thank Prof. Dr. A.H.M. Lohman for having made the vibratome available, and Miss C. de Raay for her expert technical assistance  相似文献   

12.
Summary Fucose-3H was injected into the cerebral ventricle of rats that were killed at several time intervals after injection. Semi-thin sections of the supraoptic nucleus and neurohypophysis were processed for radioautography and analysed quantitatively. Silver grains indicating the site of fucose-labeled glycoproteins were first located at the perinuclear region of the secretory neurons. The highest silver-grain density in these cells was observed at 2 h after injection, declining afterwards. Silver grains over the neurohypophysis were observed from 2 h on, reached a peak at 1 day after injection and decreased in the subsequent time intervals. The distributions of the silver grains over the neurohypophysis fitted Poissonian distributions and these were shown to be heterogeneous at the several time intervals. Pituicytes were not labeled. The percentage of silver grains over the Herring bodies increased with time. In rats deprived of water after fucose-3H injection there was a great increase in the release of labeled glycoproteins from the neurohypophysis. These results indicate that the glycoproteins synthesized by the secretory neurons of the hypothalamic nuclei are secreted in the neurohypophysis.  相似文献   

13.
We report on the ultrastructural distribution of arginine-vasopressin (AVP) in the heart of newborn rats using pre-embedding peroxidase-antiperoxidase immunocytochemistry with a polyclonal AVP antibody for electron microscopy. Positive labelling for AVP was localized in endothelial cells of main coronary arteries and cardiac vessels of smaller diameter (microvessels). Examination of the right coronary artery showed that approximately 58% of the endothelial cells were positive for AVP. Immunoreactivity to AVP in the cytoplasm of arterial endothelium predominated in association with the membranes of granular endoplasmic reticulum and in subplasmalemmal areas. The endothelium of small vessels exhibits less endoplasmic reticulum, but still shows AVP immunoprecipitate in the cytoplasm. It is suggested that endothelial AVP may contribute to vasomotor control of the coronary circulation in the early stages of postnatal development. AVP antibody also labelled some fibroblast/fibroblast-like cells associated with the coronary arteries and microvessels; thus, these cells as well as the endothelium appear to be a source of AVP in the newborn rat heart. The functional significance of these findings is discussed.  相似文献   

14.
Summary The present ultrastructural results indicate that, in the rat, the vasopressin-synthesizing perikarya of the supraoptic nucleus (NSO) attain a certain degree of maturity earlier than those of the paraventricular nucleus (NPV). In the neonate rat, the stainability of the nuclear areas is very weak; in the perikarya of the NSO a few labeled granules can be found, whereas the perikarya of the NPV often display only a labeled Golgi area, the cytoplasm being devoid of granules. At the end of the first (NSO) and the second (NPV) postnatal weeks, the filling of the neurosecretory granules with vasopressin is inhomogeneous with irregular spots of reaction product distributed on the granules. This feature is less obvious during the following week and has nearly disappeared after the third and fourth postnatal weeks. Already in the neonate two types of vasopressin-positive fibers are observed in the median eminence, characterized by the different diameters of their granules and by their typical location in the internal and the external pericapillary contact zone. Especially in one and two week-old animals, in the internal zone of the median eminence and, to a lesser degree in the neural lobe, the immunocytochemical reaction product is deposited on an axonal tubular network. Judging from the presence of very few vasopressin-negative fibers in the neural lobe of the neonate, the development of the oxytocin system appears to be delayed. A characteristic relationship between pituicytes and the neurosecretory fibers can be observed during the first two postnatal weeks. After the third postnatal week the immunocytochemical features of the vasopressin system correspond approximately to that in adult rats.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/3) and Stiftung Volkswagenwerk  相似文献   

15.
Immunohistochemical localization of corticotropin-releasing factor (CRF)-like immunoreactivity in the brain of the Japanese quail was studied by means of the peroxidase anti-peroxidase (PAP) method. CRF-immunopositive perikarya of parvocellular neurons were observed mainly in the nucleus praeopticus medialis and nucleus paraventricularis. Additional perikarya were also detected in the nucleus hypothalamicus posterior medialis in the hypothalamus and in the non-hypothalamic nucleus accumbens, nucleus septalis lateralis and nucleus dorsomedialis and dorsolateralis thalami. No CRF immunoreaction was found to coexist with the vasotocin (Vt)-containing system in comparative examination of consecutive sections treated with anti-vasopressin (Vp) serum. The CRF-immunoreactive fibers were detected mainly in the external layer of the anterior median eminence but not in its posterior division. Unilateral adrenalectomy induced the marked reduction in number of the CRF immunopositive fibers in the anterior median eminence.  相似文献   

16.
Summary In the suprachiasmatic nucleus of the rat light microscopic immunostaining for vasopressin reveals a distribution pattern of the immunoreactive material different from that known for the supraoptic nucleus. Among non-stained neurons positive-reacting perikarya display a cap- or tiplike labeling. The area of the suprachiasmatic nucleus is marked by delicate vasopressin-positive fibers. At the ultrastructural level the reaction product, after incubation with anti-vasopressin, is localized in small elementary granules unevenly distributed over the cytoplasm. Groups of axons containing specifically labeled granules contact non-reacting fibers.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr. 569/2) and Stiftung Volkswagenwerk  相似文献   

17.
In an attempt to identify the cells and organellel containing ACTH and beta-lipotropin in the rat brain, an immunocytochemical localization of these two peptides was performed at the electron microscopic level. Both ACTH and beta-lipotropin were localized in dense core vesicles of about 60-80 nm in diameter. Using serial sections, it has been possible to demonstrate that these peptides are contained not only in the same neuronal cell bodies, but also in the same dense core vesicles.  相似文献   

18.
Summary The hypothalamic hormones arginine-vasopressin (AVP), oxytocin (OXT), somatostatin (SOM), and luteinizing hormone-releasing hormone (LHRH) were localized in the rat neurohypophysis by the use of semithin serial sections and the unlabeled antibody enzyme method. Clusters of AVP fibres are present within the central region of the neural lobe, clusters of OXT fibres mainly in the peripheral part. The AVP fibres enter bilaterally into the neural lobe.The results call into question previous reports on the presence of AVP on receptors in the pars intermedia cells, since incubation with anti-AVP resulted in similar staining in the pars intermedia of the Wistar and homozygous Brattleboro rat, a mutant strain deficient in AVP. The same intermediate lobe cells are stained after incubation of serial sections with anti-AVP and anti--melanocyte-stimulating hormone (-MSH). This staining of anti-AVP could be removed by solid phase absorption to -MSH and is thus most probably due to cross reaction with -MSH. SOM fibres appear to be present in the peripheral parts of the proximal neurohypophysial stalk and mainly lateral in its more distal parts. In the neural lobe they rapidly decrease in number, although some fibres continue into the distal part of the neural lobe, running bilaterally and situated adjacent to the pars intermedia. The SOM staining within magnocellular elements, which has been reported in the literature, can most probably be explained by cross reaction of anti-SOM with neurophysins. LHRH fibres are very scarce in the neurohypophysial stalk and absent in the neural lobe.Supported by the Foundation for Medical Research FUNGOThe authors wish to thank Drs. J. De Mey (Beerse, Belgium), A. Arimura (New Orleans, U.S.A.), M.P. Dubois (Nouzilly, France), B.L. Baker (Ann Arbor, U.S.A.) and A.G.E. Pearse (London, U.K.) for their gifts of anti-somatostatin serum, Dr. B. Kerdelhué (Gif-sur-Yvette, France) for anti-LHRH serum, and Dr. F. Vandesande (Ghent, Belgium) for anti-neurophysin I and II serum and bovine neurophysin I and II. Dr. J.G. Streefkerk (Free University, Amsterdam) is acknowledged for critical comments and Mr. A.T. Potjer and Miss J. van der Velden for their skilled assistance  相似文献   

19.
Summary The distribution of growth hormone-releasing factor (GRF)-like immunoreactivity in the human hypothalamus was studied by light-microscopic immunocytochemistry. With antibodies that we developed against synthetic human pancreatic GRF (hpGRF), we localized GRF immunoreactivity in neuronal cell bodies that were observed only in the infundibular (arcuate) nucleus. Immunostained nerve fibers were found in large numbers in the neurovascular zone of the median eminence, in the proximal portion of the pituitary stalk and in periventricular areas. These localizations are in agreement with those of studies recently performed in other species and strongly suggest that GRF can be released into the capillaries of the pituitary portal plexus to reach the anterior pituitary gland. The projections of GRF neurons in extra-infundibular regions suggest that GRF can also act as a neuromodulator or neurotransmitter in the hypothalamus.  相似文献   

20.
The expression and immunohistochemical localization of galectin-3, a beta-galactoside-binding protein, was studied in several mouse tissues. Galectin-3 expression was low in the cerebrum, heart, and pancreas, and moderate in the liver, ileum, kidney, and adrenal gland. High expression of galectin-3 was found in the lung, spleen, stomach, colon, uterus, and ovary. The results of Western blot analysis largely matched the immunohistochemical findings for galectin-3. These findings suggest that galectin-3 is differentially expressed in a variety of organs in the mouse. This study provides valuable information for research on galectin-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号