首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The influences of octanoic, decanoic, and hexadencanoic acid were tested on the contracture capability of isolated skeletal muscle of frogs and rats. 1. 100 mM octanoic or 10mM decanoic acid induce contractures in skeletal mucles after 20-30 min of exposure. 2. The time of exposure necessary for induction of contractures is shortened by an increase of bath temperature, electrical stimulation or KCl-depolarization of muscles. 3. Simultaneous addition of fatty acid and caffeine (10 mM) effects a depression and a delay of the caffeine contracture. The contractures evoked by 5 mM caffeine are inhibited by lower concentrations of fatty acids (1 mM octaonoic acid, 0,1 mM hexadecanoic acid). 4. After the complete development of a caffeine (or fatty acid) contracture the muscle is not able to develop an identical contracture by a second application of the same drug, even after intermediate treatment during one or two hours in Ringer solution. If the contracture is interrupted one minute after the caffeine application by changing the solution, the tension returns quickly to the resting level. A subsequent addition of caffeine (10 mM) after about 10 minutes effects an identical contracture. Thus the effect of fatty acids on caffeine contracture may be studied on the same muscle which served as its own control. 5. As mechanisms involved in the development of fatty acid contractures and in the inhibition of caffeine contractures, interactions of free fatty acids and lipids of biological membranes are disucssed. Especially, there may be changes of the calcium affinity of cellular membranes.  相似文献   

2.
Isolated auricles or ventricles from the frog continue to contract, either spontaneously or when stimulated, for from 2 to 4 hours after they are placed in isotonic sucrose solution. After the muscles stop contracting in sucrose solution, contractility is partially restored when the muscles are placed in chloride Ringer's. However, contractility is usually not restored if the muscles are placed in sulfate Ringer's. Ventricles soaked in sucrose solution at 4–7°C continue to contract for 12 to 24 hours and during the first few hours in sucrose solution the contractions often are enhanced. Several types of experiment indicate that the sucrose solution does replace the Ringer's in the extracellular space. Auricles and ventricles also continue to conduct action potentials, with an overshoot, for from 30 to 360 minutes after being placed in sucrose solution. Muscles soaked in sucrose until they are inexcitable rapidly recover in chloride Ringer's but often fail to recover in sulfate Ringer's. The results are discussed in relation to theories about the generation of the action potential in cardiac muscle, and the role of the extracellular fluid in contraction.  相似文献   

3.
The influence of tonicity, ionic composition and temperature of the incubating medium on the increasing effect of veratrine on 24Na transport in the frog sartorius muscle has been studied. (1) The effect of veratrine applied during 24Na loading on the rate coefficient for sodium loss depended on the tonicity of the medium. The rate of loss of 24Na from muscles loaded in the presence of veratrine was not affected if the muscles had been equilibrated in hypertonic medium. However, when treating the muscles with veratrine in isotonic medium during 24Na loading, we obtained a twofold increase in the rate coefficient for sodium loss. (2) The effect of veratrine applied during the desaturation period on 24Na efflux was also found to depend on the tonicity of the medium. Veratrine applied during the desaturation period increased the 24Na efflux in muscles equilibrated in isotonic Ringer's solution. However, when the muscles were equilibrated in hypertonic medium, veratrine did not influence 24Na efflux, not even after the rate of 24Na loss had been decreased by ouabain. (3) Hypertonic medium inhibited the Li uptake-enhancing effect of veratrine, while in isotonic medium veratrine had a marked enhancing effect. (4) In hypertonic medium lithium inhibited the otherwise characteristic increasing effect of veratrine on 24 Na uptake. (5) The increase of intracellular sodium concentration as a result of incubation in cold, potassium-free Ringer's solution did not influence the 24Na exchange-increasing effect of veratrine in isotonic medium. (6) The increasing effects of 0.1 and 0.5 mM veratrine on 24Na influx had the same degree at room temperature. However, at 5 degrees C 0.5 mM veratrine increased 24Na influx to a greater extent than 0.1 mM. (7) On the basis of our earlier experiments it has been suggested that the site of action of the 24Na uptake-increasing effect of veratrine could be the neural structures in the muscle equilibrated in hypertonic media. The present experiments confirm this suggestion and at the same time demonstrate that there are substantial differences in the mechanism of the sodium transport of veratrine-treated neural and muscle membranes, which become more apparent in hypertonic medium.  相似文献   

4.
The activities of two phosphatidate phosphohydrolases were measured in cultured rat hepatocytes incubated with 0.1 mM albumin. The activity, which is inhibited by N-ethylmaleimide (PAP-1) is located in the cytosolic and membrane fractions. PAP-1 activity is stimulated by Mg2+ and it can be translocated from the cytosol to the membranes by relatively low (0.5-1 mM) concentrations of fatty acids. In addition, higher concentrations (1-3 mM) of fatty acids cause an increase in the total PAP-1 activity. Translocation of PAP-1 activity in the hepatocytes is preferentially promoted by unsaturated fatty acids (C18:1, C18:2, C18:3, C20:4 and C20:5), rather than by saturated acids (C14:0, C16:0, C18:0). Increasing the extracellular concentration of albumin from 30 microM to 1 mM displaces PAP-1 activity from the membrane fraction. Sphingosine, but not staurosporine, can inhibit the redistribution of PAP-1 activity induced by oleate. The amphiphilic amines, sphingosine, chlorpromazine and propranolol, also decrease membrane-bound PAP-1 activity in the absence of fatty acids, but they do not alter, significantly, the activity of the cytosolic PAP-1. In the presence of 1 mM oleate, sphingosine, chlorpromazine and propranolol decrease the translocation of PAP-1 from the cytosol to the membranes. The phosphohydrolase activity, which is insensitive to N-ethylmaleimide (PAP-2), is specifically located in the plasma membrane (Jamal, Z., Martin, A., Gomez-Mu?oz, A. and Brindley, D.N. (1991) J. Biol. Chem. 266, 2988-2996) and it is not stimulated by Mg2+. Saturated fatty acids, albumin, sphingosine and propranolol have no significant effects on PAP-2 activity. However, chlorpromazine decreases PAP-2 activity by about 14%. Linolenate, arachidonate and eicosapentaenoate at 1 mM also produced small (7-10%) decreases in PAP-2 activity. It is proposed that both PAP-1 and PAP-2 activities may be involved in signal transduction, although the main function of PAP-1 seems to be involved in the synthesis of glycerolipids.  相似文献   

5.
The (Ca2+ or Mg2+)-activated ectophosphohydrolase of intact frog muscle liberates, in situ, about 37 mumol inorganic phosphate/g muscle in 20 min at 20 degrees C with 10 mM ATP. Pretreatment with concanavalin A (ConA) at 4 degrees C for 18 h caused ectoenzyme inactivation which plateaued at 35-40% of the control rate. The inhibition was concentration dependent, being maximal at about 500 micrograms ConA/mL Ringer's solution. The lectin mediated its effect via the membrane glycoproteins since the inhibition was specifically prevented by alpha-methyl D-mannopyranoside. As the temperature increased from 10 to 40 degrees C, the ectoenzyme activity of untreated muscles increased linearly between 10 and 35 degrees C, with a "break point" and a clear change in slope at 35 degrees C. When treated with ConA the activity increased linearly from 10 to 40 degrees C, eliminating the transition temperature. The findings suggested that a phase transition toward fluidity in the lipid bilayer may have occurred at 35 degrees C and that this was abolished by the lectin binding. Hence we perturbed the surface membrane phospholipids of muscle pretreated with the lectin. Phospholipase C increased the activation by the lectin; phospholipase D had no effect, but phospholipase A2 completely prevented it. The lectin may require the more fluid fatty acyl chains of membrane lipids to achieve inhibition of this ecto-ATPase. Ectoacetylcholinesterase, in situ, and its inactivation by ConA were measured directly on whole, intact skeletal muscles.  相似文献   

6.
The uptake of a variety of fatty acids by isolated brush-border membranes from rabbit small intestine was studied. This uptake increased with acyl chain-length and was not diminished by washing of the lipid-treated membranes with 0.25 M CsBr. The binding of fatty acid was not accompanied by a decrease in endogenous acyl groups or of cholesterol and therefore corresponded to a net uptake accountable qualitatively and quantitatively by the fatty acid added to the membranes. The uptake of Ca2+ was stimulated by treatment of the membranes with low concentrations of unsaturated fatty acids (0.05 mM) as well as with various concentrations of caprylic acid (0.10-3.00 mM) and inhibited by treatment with higher concentrations of unsaturated fatty acids (0.20-0.60 mM). Saturated fatty acids had no marked effects on Ca2+ uptake. The stimulatory concentrations of unsaturated fatty acids did not change the Ca2+-binding characteristics of the membranes, whereas the higher concentrations decreased equilibrium binding of Ca2+ and very probably the number of high-affinity binding sites. The results of this study are assessed in terms of the effects of normal fatty acids found in the diet on the absorptive properties of the brush-border membranes.  相似文献   

7.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

8.
Fibroblast populated collagen lattices (FPCL) have facilitated the in vitro study of wound contraction and scar contracture. Mixing fibroblasts, serum containing culture medium and soluble collagen, together and then incubating the mixture at 37 degrees C produces a FPCL. The fibroblasts elongate and spread within the collagen matrix, and by forces associated with cell locomotion they reorganize the collagen fibers. The reorganization of the collagen produces a reduction in size of the FPCL, called lattice contraction. It was also found that dialyzed fetal bovine serum did not support lattice contraction. Supplementing dialyzed serum with fatty acids accelerated lattice contraction. The fatty acid composition of the fibroblast plasma membrane influences that membrane fluidity. These studies demonstrated that lattice contraction was enhanced by the additions of saturated fatty acids in the order of laurate (C-12), palmitic (C-16), and stearate (C-18). With unsaturated fatty acids additions, the order of enhanced lattice contraction was arachidonate (4 C = C), linoleate (2 C = C) and oleate (1 C = C). The addition of dialyzed serum with or without fatty acids neither altered ATP-induced cell contraction activity nor cell proliferation. It was concluded that free fatty acid additions do not modulate FPCL contraction by enhancing microfilaments contraction or increasing cell numbers. The mechanism of action was proposed to be by altering cell membrane fluidity. This finding further supports the theory that the mechanism for lattice contraction is cell locomotion, rather than cell contraction.  相似文献   

9.
The effects of Ba2+ ions on twitches, K+-induced contractures, and on intracellularly recorded membrane potentials (Em) and depolarizations of frog skeletal muscle fibres were investigated. Exposure of toe muscles to choline--Ringer's solution with 10(-3) M Ba2+ with Ca2+ (1.08 mM) eliminated or very greatly reduced contractures produced by 60 mM K+. In contrast, not only did the same concentration of Ba2+ ions fail to depress the twitch tension of isolated semitendinosus fibres when added to Ringer's with Ca2+, but it even restored twitches that had been eliminated in a zero Ca2+ Ringer's solution. The resting Em of sartorius muscle fibres in choline--Ringer's solution was reduced about 20 mV by 10(-3) M Ba2+. This Ba2+ ion concentration also antagonized the K+-induced depolarization. Thus in the presence of 1 mM Ba2+, 20 mM K+ hyperpolarized rather than depolarized the fibres and 60 or 123 mM K+ produced only very slowly developing, small depolarizations. These results suggest that the loss of the K+-induced contracture in choline-Ringer's caused by Ba2+ ions is due to an inhibition of the K+-induced depolarization. The latter result is consistent with previous findings of other workers that Ba2+ ions block membrane K+ channels.  相似文献   

10.
1. Nonanoic acid causes a depression in the contractile force of rat papillary muscles working isometrically. The effect depends on both the concentration of the fatty acid (0.1-1 mM) and the time of exposure (2-12 min), and shows a nearly complete reversibility. 2. Vmax-values derived from the force-velocity relation as well as the index of relation suggested by Meerson do not change in muscles exposed to nonanoic acid. During paired pulse stimulation with a 400 ms-delay of the second impulse, both the postextrasystolic potentiation and the time to reach a new steady level in the contraction amplitude are significantly increased. The speed of restituting the contraction after a twitch (resitution) is descreased. 4. The results suggest that the action site of nonanoic acid may be the excitation-contraction coupling system (including the action potential) rather than the contractile element or the relaxation of the muscle.  相似文献   

11.
The Control of the Membrane Potential of Muscle Fibers by the Sodium Pump   总被引:6,自引:5,他引:1  
Frog sartorius muscles were made Na-rich by immersion in K-free sulfate Ringer's solution in the cold. The muscles were then loaded with Na24 and the extracellular space cleared of radioactivity. When such Na-rich muscles were transferred to lithium sulfate Ringer's solution at 20°C, Na efflux was observed to increase with time, to reach a maximum about 15 minutes after the transfer of the muscles to Li2SO4, and then to decline. The decline in efflux from these muscles was proportional to ([Na]i)8 over a considerable range of [Na]i. The membrane potential of Na-rich muscles was about -48 mv in K-free sulfate Ringer's at 4°C but changed to -76 mv in the same solution at 20°C and to -98 mv in Li2SO4 Ringer's at 20°C. By contrast, muscles with a normal [Na]i showed a fall in membrane potential when transferred from K-free sulfate Ringer's to Li2SO4 Ringer's solution. The general conclusions from this study are (a) that Na extrusion is capable of generating an electrical potential, and (b) that increases in [Na]i lead to reversible increases in PNa of muscle fibers.  相似文献   

12.
Frog sartorius and gastrocnemius muscles were perifused at 20 degrees C, the intracellular pH (pHi) and the concentration of phosphocreatine were determined in the resting muscle by 1H-NMR spectroscopy at 470 MHz; values of pHi = 7.31 +/- 0.05 (n = 7) and concentration of phosphocreatine = 20.4 +/- 1.1 mumol/g wet wt. (n = 6) were found. The hydrolysis of phosphocreatine and the simultaneous increase in lactate upon perifusion with 10 mM caffeine (in Ringer's solution) was followed with a time resolution of 1 min. Lactate increased at a rate of 1.0 mumol/g per min, but no pHi change was recorded during the time monitored. The lower limit for the buffering capacity of the muscle cytosol was estimated to be 16.7 mumol/g muscle per pH unit from the uncertainty in pHi determination (+/- 0.03 pH units) and from the amount of lactate produced and phosphocreatine hydrolyzed. Changes in pHi, lactate concentration and fatty acyl chain intensity were monitored by 1H-NMR spectroscopy at 361 MHz in ischemic rat skeletal muscle, excised and stored at 20 degrees C. The resonances in the 1H-NMR spectrum of a human skeletal muscle perchloric acid extract are reported and tentatively assigned.  相似文献   

13.
In order to investigate the regulation of polyunsaturated fatty acid oxidation in the heart, the effect of the phosphodiesterase inhibitor enoximone on the oxidation of [1-14C] arachidonic acid, and [1-14C] arachidonyl-CoA, were studied in adult rat myocytes, and isolated rat heart mitochondria. Enoximone stimulated arachidonate oxidation by 94%, at a concentration of 0.25 mM. The apparent Vmax value of arachidonate oxidation in the presence of enoximone (6.98 nmol/mg protein/30 min), was approximately 75% higher than the value observed with the control (4.0 nmol/mg protein/30 min) in isolated myocytes. Also, enoximone stimulated arachidonate uptake by 27% at a concentration of 0.25 mM. On the other hand, enoximone had no effect on the oxidation of [1-14C] arachidonyl-CoA in isolated rat heart mitochondria. These results suggest that the oxidation of polyunsaturated fatty acids in myocytes is regulated by the rate of uptake of these acids across sarcolemmal membranes.  相似文献   

14.
Sarcoplasmic reticulum (SR) membranes isolated from rabbit and lobster muscles have similar phospholipid classes, but they differ in plasmalogen content. The plasmalogenic species are mostly distributed among phosphatidylethanolamines (PE's) and make up about 62% of the total in rabbit SR and about 46% in lobster membranes. Lobster SR phospholipids contain large amounts of polyunsaturated fatty acids which are present in low amounts in rabbit membranes. The total unsaturated fatty acids of phosphatidylcholines (PC's) represent about 53% and 73% of the total fatty chains for rabbit and lobster SR, respectively. The values found for PE's were about 56% and 64%, respectively. Furthermore, lobster membranes contain significant amounts of PC and PE molecular species with unsaturated fatty acids in positions 1 and 2, whereas rabbit SR contain low amounts.  相似文献   

15.
Nutrition and carbon metabolism of Methanococcus voltae.   总被引:54,自引:27,他引:27       下载免费PDF全文
Methanococcus voltae is a heterotrophic, H2-oxidizing methanogenic bacterium. In complex medium, this bacterium has a doubling time of 1.2 h at its temperature optimum of 38 degrees C. In defined medium, optimal growth is obtained with 0.75 mM isoleucine, 0.75 mM leucine, 2.5 mM acetate, 5 mM NH4Cl, 84 mM MgSO4, 0.4 M NaCl, 1 mM CaCl2, 10 microM Fe2O3, and 0.2 microM NiCl2. In addition, pantothenate, sodium selenate, and cobalt stimulate growth. Optimal growth is obtained between pH 6.0 and 7.0 with either H2 or formate as the electron donor. The volatile fatty acids 2-methylbutyrate and isovalerate can substitute for isoleucine and leucine, respectively. Cellular carbon is derived from acetate (31%), isoleucine (22%), leucine (25%), and carbon dioxide (23%). The amino acids and fatty acids are incorporated almost exclusively into protein. A comparison of the incorporation of U-14C-amino acids and 1-14C-fatty acids indicated that the fatty acids are degraded during incorporation into cell protein. The distribution of carbon from the amino acids suggests that acetyl coenzyme A is not a major intermediate in the degradation of these compounds. Thus, M. voltae may convert isoleucine and leucine to other amino acids by a unique mechanism. The lipid carbon is derived largely from acetate. Thus, the isoprenoid lipids are synthesized de novo from acetate rather than by degradation of leucine. The carbon in the nucleic acids is derived from carbon dioxide (45%), the C-1 of acetate (25%), the C-2 of acetate (22%), and isoleucine and leucine (7%). This labeling pattern is consistent with known biochemical pathways.  相似文献   

16.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

17.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

18.
Ozone is shown to react with lysozyme in reverse micelles formed by 0.1 M sodium di-2-ethylhexylsulfosuccinate and 1.2-3 M water (pH 7.4) in isooctane solvent. The reaction of ozone is assessed by the oxidation of tryptophan residues in the protein to N-formylkynurenine. Cosolubilization of oleate in lysozyme-containing reverse micellar solutions at concentrations of 0.5-10 mM results in a progressive inhibition (19% to 82%) of the oxidation of tryptophan residues with a concentration for 50% inhibition around 2 mM. At this concentration of oleate, the magnitude of inhibition is independent of the micelle size and concentration, the overall interfacial area of reverse micelles, and the amount of ozone employed. These findings are discussed in terms of competitive reactions of ozone with unsaturated fatty acids and proteins in the lung lining fluid and in biological membranes.  相似文献   

19.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   

20.
1. The oxidation of the three branched-chain amino acids was regulated in parallel fashion in rat tissues studied in vitro. 2. With 0.1 mM-[1-14C]isoleucine as substrate in the presence of 5.5 mM-glucose, 14CO2 production was 0.6 mumol/2 h per g in the aorta, 0.3 in peripheral nerve, 0.2 in muscle and 0.13 in spinal cord. 3. The ratio 14C oxidized/14C incorporated into proteins with 0.1 mM-[1-14C]leucine was 1.3 in hemidiaphragms, 3.3 in sciatic nerve and 1.0 in nerves undergoing Wallerian degeneration. Leucine oxidation decreased only slightly during degeneration, but protein synthesis doubled. 4. Hemidiaphragms incubated with [1-14C]leucine or 4-methyl-2-oxo[1-14C]pentanoate increased 14CO2 production 7-9-fold as substrate concentration was increased from 0.1 to 0.5 mM; under the same conditions 14CO2 production by nerves increased only 2-3-fold. 5. 2-Oxoglutarate stimulated the oxidation of the branched-chain amino acids by muscles and peripheral nerves and the oxidation of 4-methyl-2-oxopentanoate by hemidiaphragms but not by nerves. 6. Octanoate (0.1-1.0 mM) markedly stimulated the oxidation of branched-chain amino acids and of 4-methyl-2-oxopentanoate in hemidiaphragms, but inhibited oxidation of both by peripheral nerves and spinal cord. In aortas, oxidation of isoleucine (the only substance tested) was inhibited by octanoate. 7. The effects of octanoate and 2-oxoglutarate on leucine oxidation by hemidiaphragms were additive at low concentrations. When maximally stimulating concentrations of either agent were used, addition of the other was ineffective. 8. Pyruvate inhibited the oxidation of branched-chain amino acids and 4-methyl-2-oxopentanoate in all tissues tested. 9. Insulin did not affect the oxidation of 4-methyl-2-oxopentanoate by muscles or nerves. 10. The oxidative decarboxylation of the branched-chain alpha-oxo acids is suggested as a regulatory site of branched-chain amino acid oxidation. Differences in regulation between muscle on the one hand, and nerve and aorta on the other, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号