首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T E Kmiecik  D Shalloway 《Cell》1987,49(1):65-73
pp60c-src is phosphorylated in vivo at tyrosine 527, a residue not present in pp60v-src (its transforming homolog), and not at tyrosine 416, its site of in vitro autophosphorylation. To test the hypothesis that tyrosine phosphorylation regulates pp60c-src biological activity, we constructed and studied pp60c-src mutants in which Tyr 527 and Tyr 416 were separately or coordinately altered to phenylalanine. Tyr----Phe 527 mutation strongly activated pp60c-src transforming and kinase activities, whereas the additional introduction of a Tyr----Phe 416 mutation suppressed these activities. Tyr----Phe 416 mutation of normal pp60c-src eliminated its partial transforming activity, which suggests that transient or otherwise restricted phosphorylation of Tyr 416 is important for pp60c-src function even though stable phosphorylation is not observed in vivo.  相似文献   

2.
A promoter of the nuclear proto-oncogene fos was activated by cotransfection with the viral src gene. Ability to transactivate the c-fos promoter was dependent on tyrosine kinase activity, because (i) src mutants which have reduced tyrosine kinase activity due to mutation of Tyr-416 to Phe showed lower promoter activation, (ii) pp60c-src mutants which have increased tyrosine kinase activity due to mutation of Tyr-527 to Phe also augmented c-fos promoter induction, and (iii) mutation in the ATP-binding site of pp60v-src strongly suppressed c-fos promoter activation. Tyrosine kinase activity alone, however, was not sufficient for promoter activation, because of pp60v-src mutant which lacked its myristylation site and consequently membrane association showed no increased c-fos promoter activation. Both the tyrosine kinase- and membrane-association-defective mutants were also unable to induce transformation. Therefore, phosphorylation of membrane-associated substrates appears to be required for both gene expression and cellular transformation by the src protein. Two regions of the c-fos promoter located between positions -362 and -324 and positions -323 and -294 were responsive to src stimulation. We believe that protein tyrosine phosphorylation represents an important step of signal transduction from the membrane to the nucleus.  相似文献   

3.
To investigate the importance of tyrosine phosphorylation in the regulation of pp60c-src, we have substituted phenylalanine for tyrosine at positions 416, 519, and 527. Cells expressing the 527 or the 519/527 mutant but not the 416 or the 519 mutant were morphologically transformed, grew in soft agar, and formed foci. In addition, the 527 and 519/527 mutants had elevated kinase activities in vitro. Modifying Tyr 416 to phenylalanine in the 527 or the 519/527 mutants only partially inhibited their kinase activities yet abolished their ability to induce focus formation and promote growth in soft agar. These results suggest that two events must occur to activate the full transforming potential of pp60c-src: hypophosphorylation at Tyr 527 and hyperphosphorylation at Tyr 416.  相似文献   

4.
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.  相似文献   

5.
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus.  相似文献   

6.
Previous studies have shown that carboxyl-terminal mutation of pp60c-src can activate its transforming ability. Conflicting results have been reported for the transforming ability of pp60c-src mutants having only mutations outside its carboxyl-terminal region. To clarify the effects of such mutations, we tested the activities of chimeric v(amino)- and c(carboxyl)-src (v/c-src) proteins at different dosages in NIH 3T3 cells. The focus-forming activity of Rous sarcoma virus long terminal repeat (LTR)-src expression plasmids was significantly reduced when the v-src 3' coding region was replaced with the corresponding c-src region. This difference was masked when the Rous sarcoma virus LTR was replaced with the Moloney murine leukemia virus LTR, which induced approximately 20-fold more protein expression, but even focus-selected lines expressing v/c-src proteins were unable to form large colonies in soft agarose or tumors in NFS mice. This suggests that pp60c-src is not equally sensitive to mutations in its different domains and that there are at least two distinguishable levels of regulation, the dominant one being associated with its carboxyl terminus. v/c-src chimeric proteins expressed with either LTR had high in vitro specific kinase activity equal to that of pp60v-src but, in contrast, were phosphorylated at both Tyr-527 and Tyr-416. Total cell protein phosphotyrosine was enhanced in cells incompletely transformed by v/c-src proteins to the same extent as in v-src-transformed cells, suggesting that the carboxyl-terminal region may affect substrate specificity in a manner that is important for transformation.  相似文献   

7.
We have previously found that Rous sarcoma virus variants in which the viral src (v-src) gene is replaced by the cellular src (c-src) gene have no transforming activity. In this study, we analyzed the basis for the inability of the p60c-src overproduced by these variants to transform cells. Phosphorylations of tyrosine residues in total cell protein or in cellular 34K protein are known to be markedly enhanced upon infection with wild-type Rous sarcoma virus. We found that these tyrosine phosphorylations were only slightly increased in the c-src-containing virus-infected cells, whereas both levels were significantly increased by infection with wild-type Rous sarcoma virus, or transforming mutant viruses which are derived from c-src-containing viruses by spontaneous mutation. Phosphorylation at tyrosine 416 of p60 itself was also extremely low in overproduced p60c-src and high in p60s of transforming mutant viruses. In immunoprecipitates with monoclonal antibody, the overproduced p60c-src had much lower casein tyrosine kinase activity than did p60v-src. We previously showed that p60 myristylation and plasma membrane localization may be required for cell transformation. p60c-src was similar to transforming p60s in these properties. These results strongly suggest that the low level of tyrosine phosphorylation by overproduced p60c-src accounts for its inability to transform cells.  相似文献   

8.
The role of tyrosine phosphorylation in the regulation of tyrosine protein kinase activity was investigated using site-directed mutagenesis to alter the structure and environment of the three tyrosine residues present in the C terminus of avian pp60c-src. Mutations that change Tyr 527 to Phe or Ser activate in vivo tyrosine protein kinase activity and induce cellular transformation of chicken cells in culture. In contrast, alterations of tyrosine residues present at positions 511 or 519 in c-src do not induce transformation or in vivo tyrosine protein kinase activity. Amber mutations, which alter the structure of the pp60c-src C terminus by inducing premature termination of the c-src protein at either residue 518 or 523 also induce morphological transformation and increase in vivo tyrosine phosphorylation, whereas removal of the last four residues of c-src by chain termination at residue 530 does not alter the kinase activity or the biological activity of the resultant c-src protein. We conclude from these studies that C-terminal alterations which either remove or replace Tyr 527 serve to activate the c-src protein resulting in cellular transformation and increased in vivo tyrosine protein kinase activity.  相似文献   

9.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

10.
11.
A large number of mutations were introduced into the carboxy-terminal domain of pp60c-src. The level of phosphorylation on Tyr-416 and Tyr-527, the transforming activity (as measured by focus formation on NIH 3T3 cells), kinase activity, and the ability of the mutant pp60c-src to associate with the middle-T antigen of polyomavirus were examined. The results indicate that Tyr-527 is a major carboxy-terminal element responsible for regulating pp60c-src in vivo. A good but not perfect correlation exists between lack of phosphorylation at Tyr-527 and increased phosphorylation at Tyr-416, between elevated phosphorylation on Tyr-416 and activated kinase activity, and between activated kinase activity and transforming activity. Phosphorylation of Tyr-527 was insensitive to the mutation of adjacent residues, indicating that the primary sequence only has a minor role in recognition by kinases or phosphatases which regulate it in vivo. Three mutants which have in common a modified Glu-524 residue were phosphorylated on Tyr-416 and Tyr-527 and were weakly transforming. This suggests that other mechanisms besides complete dephosphorylation of Tyr-527 can lead to increased phosphorylation of Tyr-416 and activation of the transforming activity of pp60c-src. Furthermore, the residues between Asp-518 and Pro-525 were required to form a stable complex with middle-T antigen. The proximity of these sequences to Tyr-527 suggests a model in which middle-T activates pp60c-src by binding directly to this region of the molecular and thereby preventing phosphorylation of Tyr-527. Alternatively, middle-T binding may mediate a conformational change in this region, which in turn induces an alteration in the level of phosphorylation at Tyr-527 and Tyr-416.  相似文献   

12.
Protein phosphorylation sites act to transduce signals into changes in enzymatic activity, representing a point of interaction within a regulatory pathway. The amino acid sequence surrounding a phosphorylation site may well have several functions, including recognition by an appropriate kinase. By generating random mutations in its immediate vicinity, we have examined the sequence requirements of a regulatory tyrosine phosphorylation site, Tyr527, in the proto-oncogene product, p60c-src. The transforming and kinase activities of p60c-src are repressed by phosphorylation of Tyr527. Mutations were made around Tyr527 without changing Tyr527 or the kinase domain. Twenty-nine mutants were sequenced and classified as transforming or nontransforming for Rat-2 cells. Nontransforming mutants contained a surprising variety of COOH-terminal mutations, although acidic residues were present at positions 518 and 524 in all nontransforming mutants. Transforming mutants that contained single-residue changes at Asp518 and Ser522 demonstrated the importance of these residues. Other transforming mutants contained two or more substitutions, but the results are most simply explained if residues Glu524 and Thr523 are also important for normal regulation. Transforming mutations reduced the phosphorylation of Tyr527. We conclude that only a few of the residues in the COOH terminus other than Tyr527 are required to ensure normal phosphorylation and repression of activity in fibroblasts. Other residues may have been conserved during evolution to permit normal function and regulation in other cell types.  相似文献   

13.
Repression of the tyrosine kinase activity of the cellular src protein (pp60c-src) depends on the phosphorylation of a tyrosine residue (Tyr-527) near the carboxy terminus. Tyr-527 is located 11 residues C terminal from the genetically defined end of the kinase domain (Leu-516) and is therefore in a negative regulatory region. Because the precise sequence of amino acids surrounding Tyr-527 appears to be unimportant for regulation, we hypothesized that the conformational constraints induced by phosphorylated Tyr-527 may require the correct spacing between the kinase domain (Leu-516) and Tyr-527. In this report, we show that deletions at residue 518 of two, four, or seven amino acids or insertions at this residue of two or four amino acids activated the kinase activity and thus the transforming potential of pp60c-src. As is the case for the prototype transforming variant, pp60527F, activation caused by these deletions or insertions was abolished when Tyr-416 (the autophosphorylation site) was changed to phenylalanine. In comparison with wild-type pp60c-src, the src proteins containing the alterations at residue 518 showed a lower phosphorylation state at Tyr-527 regardless of whether residue 416 was a tyrosine or a phenylalanine. Mechanisms dealing with the importance of spacing between the kinase domain and Tyr-527 are discussed.  相似文献   

14.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

15.
16.
We provide direct evidence that serine 17 is the major site of serine phosphorylation in p60v-src, the transforming protein of Rous sarcoma virus, and in its cellular homolog, p60c-src. The amino acid composition of the tryptic peptide containing the major site of serine phosphorylation in p60v-src was deduced by peptide map analysis of the protein labeled biosynthetically with a variety of radioactive amino acids. Manual Edman degradation revealed that the phosphorylated serine in this peptide was the amino terminal residue. These data are consistent only with the phosphorylation of serine 17. The major site of serine phosphorylation in chicken p60c-src, the cellular homolog of p60v-src, is contained in a tryptic peptide identical to that containing serine 17 in p60v-src of Schmidt Ruppin Rous sarcoma virus of subgroup A. Serine 17 is therefore also phosphorylated in p60c-src. The p60v-src protein encoded by Prague Rous sarcoma virus was found to contain two sites of tyrosine phosphorylation. The previously unrecognized site of tyrosine phosphorylation may be tyrosine 205 or possibly tyrosine 208. Treatment of Prague Rous sarcoma virus-infected cells with vanadyl ions stimulated the protein kinase activity of p60v-src and increased the phosphorylation of tyrosine 416 but not the phosphorylation of the additional site of tyrosine phosphorylation.  相似文献   

17.
Altered phosphorylation and activation of pp60c-src during fibroblast mitosis   总被引:39,自引:0,他引:39  
At least half the pp60c-src in NIH 3T3-derived c-src overexpresser cells in modified by novel threonine and, possibly, serine phosphorylation within its amino 16 kd region during mitosis. At the same time, the tryptic phosphopeptide containing Ser 17, the site of cyclic AMP-dependent phosphorylation, is either modified or dephosphorylated. While the amount of pp60c-src is not significantly altered, the in vitro-specific kinase activity of modified pp60c-src is enhanced 4- to 7-fold. Modified pp60c-src has the same tyrosine-containing tryptic phosphopeptides as pp60c-src from unsynchronized cells, indicating that activation is independent of Tyr 416/Tyr 527 phosphorylation. Electrophoretic mobility retardations indicated that endogenous pp60c-src and pp60v-src are similarly modified during mitosis. The modifications and enhanced activity disappear near the time of cell division. These results suggest that pp60c-src is regulated by and, in turn, may regulate mitosis-specific events in fibroblasts.  相似文献   

18.
The products of the viral and cellular src genes, p60v-src and p60c-src, appear to be composed of multiple functional domains. Highly conserved regions called src homology 2 and 3 (SH2 and SH3), comprising amino acid residues 88 to 250, are believed to modulate the protein-tyrosine kinase activity present in the carboxy-terminal halves of the src proteins. To explore the functions of these regions more fully, we have made 34 site-directed mutations in a transformation-competent c-src gene encoding phenylalanine in place of tyrosine 527 (Y527F c-src). Twenty of the new mutations change only one or two amino acids, and the remainder delete small or large portions of the SH2-SH3 region. These mutant alleles have been incorporated into a replication-competent Rous sarcoma virus vector to examine the biochemical and biological properties of the mutant proteins after infection of chicken embryo fibroblasts. Four classes of mutant proteins were observed: class 1, mutants with only slight differences from the parental gene products; class 2, mutant proteins with diminished transforming and specific kinase activities; class 3, mutant proteins with normal or enhanced specific kinase activity but impaired biological activity, often as a consequence of instability; and class 4, mutant proteins with augmented biological and catalytic activities. In general, there was a strong correlation between total kinase activity (or amounts of intracellular phosphotyrosine-containing proteins) and transforming activity. Deletion mutations and some point mutations affecting residues 109 to 156 inhibited kinase and transforming functions, whereas deletions affecting residues 187 to 226 generally had positive effects on one or both of those functions, confirming that SH2-SH3 has complex regulatory properties. Five mutations that augmented the transforming and kinase activities of Y527F c-src [F172P, R175L, delta(198-205), delta(206-226), and delta(176-226)] conferred transformation competence on an otherwise normal c-src gene, indicating that mutations in SH2 (like previously described lesions in SH3, the kinase domain, and a carboxy-terminal inhibitory domain) can activate c-src.  相似文献   

19.
R Jove  S Kornbluth  H Hanafusa 《Cell》1987,50(6):937-943
Cellular src protein, p60c-src, is phosphorylated on tyrosine 527 in chicken embryo fibroblasts, and this phosphorylation is implicated in suppressing the protein-tyrosine kinase activity and transforming potential of p60c-src. To determine whether tyrosine 527 phosphorylation is dependent on p60c-src kinase activity, the ATP-binding site of chicken p60c-src was destroyed by substitution of lysine 295 with methionine. The resultant protein, p60c-src(M295), expressed either in chicken cells or in yeast, lacked detectable kinase activity. Nevertheless, tyrosine and serine phosphorylation of p60c-src(M295) overproduced in chicken cells were indistinguishable from that of authentic p60c-src. By contrast, p60c-src(M295) was not phosphorylated on tyrosine in yeast. These results suggest that a protein kinase present in chicken cells but not in yeast phosphorylates tyrosine 527 in trans, and are consistent with the possibility that this kinase is distinct from p60c-src.  相似文献   

20.
To investigate the importance of a conserved region spanning residues 137 to 241 in the noncatalytic domain of p60c-src (SH2 region), we used oligonucleotide-directed mutagenesis to change residues that are highly conserved in this region. Chicken embryo fibroblasts infected with a p60c-src variant containing arginine instead of tryptophan at residue 148 (W148R) appeared more rounded than cells overexpressing a normal c-src gene, and they formed colonies in soft agar. p60c-src variants containing serine instead of arginine at residue 155 (R155S) or isoleucine instead of glycine at residue 170 (G170I) also appeared transformed and were anchorage independent, but to a lesser extent than W148R. Mutation of residue 201 from histidine to leucine (H201L) had no observable effect. The in vitro kinase activity of cells infected with W148R or G170I was elevated twofold. Expression of p60W148R (or, to a lesser extent, of p60G170I) increased the number of proteins phosphorylated on tyrosine in infected cells. All of the mutants were phosphorylated in vivo on Tyr-527, instead of Tyr-416 as observed for p60v-src. Immunoprecipitated p60W148R and p60G170I were found to be associated with a phosphatidylinositol kinase activity, a factor which appears to be necessary for transformation by tyrosine-specific protein kinases. These results show that a single point mutation in the SH2 region of the cellular src gene can activate its transforming potential. This type of activation is in a new category of alterations at the amino terminus that activate but do not cause a shift in phosphorylation at the carboxy terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号