首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA bending and its relation to nucleosome positioning   总被引:93,自引:0,他引:93  
X-ray and solution studies have shown that the conformation of a DNA double helix depends strongly on its base sequence. Here we show that certain sequence-dependent modulations in structure appear to determine the rotational positioning of DNA about the nucleosome. Three different experiments are described. First, a piece of DNA of defined sequence (169 base-pairs long) is closed into a circle, and its structure examined by digestion with DNAase I: the helix adopts a highly preferred configuration, with short runs of (A, T) facing in and runs of (G, C) facing out. Secondly, the same sequence is reconstituted with a histone octamer: the angular orientation around the histone core remains conserved, apart from a small uniform increase in helix twist. Finally, it is shown that the average sequence content of DNA molecules isolated from chicken nucleosome cores is non-random, as in a reconstituted nucleosome: short runs of (A, T) are preferentially positioned with minor grooves facing in, while runs of (G, C) tend to have their minor grooves facing out. The periodicity of this modulation in sequence content (10.17 base-pairs) corresponds to the helix twist in a local frame of reference (a result that bears on the change in linking number upon nucleosome formation). The determinants of translational positioning have not been identified, but one possibility is that long runs of homopolymer (dA) X (dT) or (dG) X (dC) will be excluded from the central region of the supercoil on account of their resistance to curvature.  相似文献   

2.
The affinity of a DNA sequence for the histone octamer in a core nucleosome depends on the intrinsic flexibility of the DNA. This parameter can be affected both by the sequence-dependent conformational preferences of individual base steps and by the nature and location of the exocyclic groups of the DNA bases. By adopting highly preferred conformations particular types of base step can influence the rotational positioning of the DNA on the surface of the histone octamer. The asymmetry of the next higher order of chromatin structure is determined in part by the asymmetric binding of the globular domain of histone H5 to the core nucleosome. © 1998 John Wiley & Sons, Inc. Biopoly 44: 423–433 1997  相似文献   

3.
MMTV-LTR sequences -190/-45 position a histone octamer both in vivo and in vitro. Experimental evidence suggested that nucleosome rotational positioning is determined by the DNA sequence itself. We developed an algorithm that is able to predict the most favorable path of a given DNA sequence over a histone octamer, based on rotational preferences of different dinucleotides. Our analysis shows that these preferences are sufficient for explaining the observed rotational positioning of the MMTV-LTR nucleosome, at one base pair accuracy level. Computer-generated 3-D models of the experimentally calculated and predicted MMTV-LTR nucleosome show that the predicted orientation is fully compatible with the currently available data in terms of accessibility of relevant sequences to regulatory proteins.  相似文献   

4.
We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.  相似文献   

5.
The basis for the choice of translational position of a histone octamer on DNA is poorly understood. To gain further insights into this question we have studied the translational and rotational settings of core particles assembled on a simple repeating 20 bp positioning sequence. We show that the translational positions of the core particles assembled on this sequence are invariant with respect to the DNA sequence and occur at 20 bp intervals. Certain modifications of the original sequence reduce the spacing of possible dyads to 10 bp. At least one of these alters both the translational and rotational settings. We conclude that the translational position of a core particle is specified by sequence determinants additional to those specifying rotational positioning. The rotational settings on either side of the dyads of core particles assembled on the wild-type and a mutant sequence differ by +2 bp, corresponding to an overall helical periodicity of approximately 10.15 bp. The average helical periodicity of the central two to four turns is 10.5-11 bp whilst that of the flanking DNA is closer to 10 bp. The DNA immediately flanking the dyad is also characterised by a more extensive susceptibility to cleavage by hydroxyl radical.  相似文献   

6.
7.
The human centromere proteins A (CENP-A) and B (CENP-B) are the fundamental centromere components of chromosomes. CENP-A is the centromere-specific histone H3 variant, and CENP-B specifically binds a 17-base pair sequence (the CENP-B box), which appears within every other alpha-satellite DNA repeat. In the present study, we demonstrated centromere-specific nucleosome formation in vitro with recombinant proteins, including histones H2A, H2B, H4, CENP-A, and the DNA-binding domain of CENP-B. The CENP-A nucleosome wraps 147 base pairs of the alpha-satellite sequence within its nucleosome core particle, like the canonical H3 nucleosome. Surprisingly, CENP-B binds to nucleosomal DNA when the CENP-B box is wrapped within the nucleosome core particle and induces translational positioning of the nucleosome without affecting its rotational setting. This CENP-B-induced translational positioning only occurs when the CENP-B box sequence is settled in the proper rotational setting with respect to the histone octamer surface. Therefore, CENP-B may be a determinant for translational positioning of the centromere-specific nucleosomes through its binding to the nucleosomal CENP-B box.  相似文献   

8.
The bending of DNA in nucleosomes and its wider implications   总被引:26,自引:0,他引:26  
The DNA of a nucleosome core particle is wrapped tightly around a histone octamer with approximately 80 base pairs per superhelical turn. Studies of both naturally occurring and reconstituted systems have shown that DNA sequences very often adopt well-defined locations with respect to the octamer. Recent work in this laboratory has provided a structural explanation for this sequence-dependent positioning in terms of the differential flexibility of different sequences and of departures from smooth bending. The 'rules' that are emerging for DNA bendability and, from the results of other workers, on intrinsically bent DNA, are likely to be useful in considering looping and bending of DNA in other processes in which it is thought to be wrapped around a protein core.  相似文献   

9.
10.
DNA originating from chicken erythrocyte mononucleosomes was cloned and sequenced. The properties of nucleosome reconstruction were compared for two cloned inserts, selected on account of their interesting sequence organization, length and difference in DNA bending. Cloned fragment 223 (182 base-pairs) carries alternatively (A)3-4 and (T)4-5 runs approximately every ten base-pairs and is bent; cloned fragment 213 (182 base-pairs) contains a repeated C4-5ATAAGG consensus sequence and is apparently not bent. Our experiments indicate the preference of the bent DNA fragment 223 over fragment 213 to associate in vitro with an octamer of histones under stringent conditions. We provide evidence that the in vitro nucleosome formation is hampered in the case of fragment 213, whereas the reconstituted nucleosomes were equally stable once formed. For the correct determination of the positioning of the histone octamer with regard to the two nucleosome-derived cloned DNA sequences, the complementary use of micrococcal nuclease, exonuclease III and DNase I is a prerequisite. No unique, but rotationally related, positions of the histone octamer were found on these nucleosome-derived DNA fragments. The sequence-dependent anisotropic flexibility, as well as intrinsic bending of the DNA, resulting in a rotational setting of the DNA fragments on the histone core, seems to be a strong determinant for the allowed octamer positions, Exonuclease III digestion indicates a different histone-DNA association when oligo(d(C.G)n) stretches are involved. The apparent stagger near oligo(d(A.T)n) stretches generated by DNase I digestion on reconstituted nucleosome 223 was found to be inverted from the normal two-base 3' overhang to a two-base 5' overhang. Two possibilities of the oligo(d(A.T)n) minor groove location relative to the histone core are envisaged to explain this anomaly in stagger.  相似文献   

11.
The DNA of all eukaryotic organisms is packaged into nucleosomes (a basic repeating unit of chromatin). A nucleosome consists of histone octamer wrapped by core DNA and linker histone H1 associated with linker DNA. It has profound effects on all DNA-dependent processes by affecting sequence accessibility. Understanding the factors that influence nucleosome positioning has great help to the study of genomic control mechanism. Among many determinants, the inherent DNA sequence has been suggested to have a dominant role in nucleosome positioning in vivo. Here, we used the method of minimum redundancy maximum relevance (mRMR) feature selection and the nearest neighbor algorithm (NNA) combined with the incremental feature selection (IFS) method to identify the most important sequence features that either favor or inhibit nucleosome positioning. We analyzed the words of 53,021 nucleosome DNA sequences and 50,299 linker DNA sequences of Saccharomyces cerevisiae. 32 important features were abstracted from 5,460 features, and the overall prediction accuracy through jackknife cross-validation test was 76.5%. Our results support that sequence-dependent DNA flexibility plays an important role in positioning nucleosome core particles and that genome sequence facilitates the rapid nucleosome reassembly instead of nucleosome depletion. Besides, our results suggest that there exist some additional features playing a considerable role in discriminating nucleosome forming and inhibiting sequences. These results confirmed that the underlying DNA sequence plays a major role in nucleosome positioning.  相似文献   

12.
We have examined the structures of unique sequence, A/T-rich DNAs that are predicted to be relatively rigid [oligo(dA).oligo(dT)], flexible [oligo[d(A-T)]], and curved, using the hydroxyl radical as a cleavage reagent. A 50-base-pair segment containing each of these distinct DNA sequences was placed adjacent to the T7 RNA polymerase promoter, a sequence that will strongly position nucleosomes. The final length of the DNA fragments was 142 bp, enough DNA to assemble a single nucleosome. Cleavage of DNA in solution, while bound to a calcium phosphate crystal, and after incorporation into a nucleosome is examined. We find that the distinct A/T-rich DNAs have very different structural features in solution and helical periodicities when bound to a calcium phosphate. In contrast, the organization of the different DNA sequences when associated with a histone octamer is very similar. We conclude that the histone core exerts a dominant constraint on the structure of DNA in a nucleosome and that inclusion of these various unique sequences has only a very small effect on overall nucleosome stability and structure.  相似文献   

13.
Structural features of a regulatory nucleosome   总被引:9,自引:0,他引:9  
DNA sequences from the long terminal repeat of the mouse mammary tumor virus (MMTV-LTR) position nucleosomes both in vivo and in vitro. Here, were present chromatin reconstitution experiments showing that MMTV-LTR sequences from -236 to +204 accommodate two histone octamers in positions compatible with the in vivo data. This positioning is not influenced by the length of the DNA fragment and occurs in linear as well as in closed circular DNA molecules. MMTV-LTR DNA sequences show an intrinsic bendability that closely resembles its wrapping around the histone octamer. We propose that bendability is responsible for the observed rotational nucleosome positioning. Translational nucleosome positioning seems also to be determined by the DNA sequence. These data, along with the results from reconstitution experiments with insertion mutants, support a modular model of nucleosome phasing on MMTV-LTR, where the actual positioning of the histone octamer results from the additive effect of multiple features of the DNA sequence.  相似文献   

14.
Two nucleoside derivatives containing the base analogues 3-deazaadenine and 3-methyl-2-pyridone have been prepared as analogues of dA and dT, respectively. After conversion into the appropriately protected phosphoramidites, DNA sequences were prepared with site-specifically placed analogues. When present in a duplex DNA sequence, the analogues result in the deletion of one or both of the hydrogen bonding functional groups (the N3-nitrogen of dA and the O2-carbonyl of dT) present in the minor groove. Binding by two ligands, 4',6-diamidine-2-phenyl indole (DAPI) and Hoechst 33258 in the minor groove has been probed using a variety of DNA sequences. These sequences contain a d(GAATTC)2 core with analogue nucleosides substituted for one or more of the dA and dT residues. DAPI bound strongly to any sequence that contained both O2-carbonyls of the central two dT residues. The presence of a dc3A residue did in some cases enhance binding. With one of the central O2-carbonyls deleted, the binding was noticeably reduced, and with both absent, no significant binding could be detected. Similar although less dramatic results were observed with Hoechst 33258 binding to analogue sequences.  相似文献   

15.
I explain why many recently reported measurements for the "free energy" of positioning of the histone octamer on different DNA sequences are likely to be in error: i.e. because histone octamers do not equilibrate between different DNA molecules at low salt, but only at high salt. Thus, the reported "free energies" refer to an equilibrium at high salt, under nearly dissociating conditions between protein and DNA, and they are likely to be much too small on an absolute scale. There are many other lines of evidence to suggest that the preferences of the histone octamer for different DNA sequences are rather strong and of importance in biological systems.  相似文献   

16.
Chromatin organization and composition impart sophisticated regulatory features critical to eukaryotic genomic function. Although DNA sequence-dependent histone octamer binding is important for nucleosome activity, many aspects of this phenomenon have remained elusive. We studied nucleosome structure and stability with diverse DNA sequences, including Widom 601 derivatives with the highest known octamer affinities, to establish a simple model behind the mechanics of sequence dependency. This uncovers the unique but unexpected role of TA dinucleotides and a propensity for G|C-rich sequence elements to conform energetically favourably at most locations around the histone octamer, which rationalizes G|C% as the most predictive factor for nucleosome occupancy in vivo. In addition, our findings reveal dominant constraints on double helix conformation by H3-H4 relative to H2A-H2B binding and DNA sequence context-dependency underlying nucleosome structure, positioning and stability. This provides a basis for improved prediction of nucleosomal properties and the design of tailored DNA constructs for chromatin investigations.  相似文献   

17.
The roles and interdependence of DNA sequence and archaeal histone fold structure in determining archaeal nucleosome stability and positioning have been determined and quantitated. The presence of four tandem copies of TTTAAAGCCG in the polylinker region of pLITMUS28 resulted in a DNA molecule with increased affinity (DeltaDeltaG of approximately 700 cal mol(-1)) for the archaeal histone HMfB relative to the polylinker sequence, and the dominant, quantitative contribution of the helical repeats of the dinucleotide TA to this increased affinity has been established. The rotational and translational positioning of archaeal nucleosomes assembled on the (TTTAAAGCCG)(4) sequence and on DNA molecules selectively incorporated into archaeal nucleosomes by HMfB have been determined. Alternating A/T- and G/C-rich regions were located where the minor and major grooves, respectively, sequentially faced the archaeal nucleosome core, and identical positioning results were obtained using HMfA, a closely related archaeal histone also from Methanothermus fervidus. However, HMfA did not have similarly high affinities for the HMfB-selected DNA molecules, and domain-swap experiments have shown that this difference in affinity is determined by residue differences in the C-terminal region of alpha-helix 3 of the histone fold, a region that is not expected to directly interact with DNA. Rather this region is thought to participate in forming the histone dimer:dimer interface at the center of an archaeal nucleosome histone tetramer core. If differences in this interface do result in archaeal histone cores with different sequence preferences, then the assembly of alternative archaeal nucleosome tetramer cores could provide an unanticipated and novel structural mechanism to regulate gene expression.  相似文献   

18.
Wu C  Travers A 《Biochemistry》2005,44(43):14329-14334
Using a novel competition assay to determine the relative strength of different histone octamer-binding sites, we have compared three natural and two synthetic sites. We show that the relative affinities of these sites for the histone octamer depend upon both the temperature and octamer concentration. In particular, under certain conditions, a natural octamer-binding site from a yeast promoter outcompetes a synthetic sequence of comparable affinity to the strongest previously described positioning sequence. Under other conditions, this synthetic sequence is the preferred octamer ligand. We infer that sequence selection by the histone octamer depends strongly upon both the sequence-dependent anisotropy of DNA bending and on DNA deformability and that these parameters may contribute differently to nucleosome formation. These findings indicate that previous studies designed to identify strong octamer-binding sites may fail to select some natural strong binding sites.  相似文献   

19.
Nucleosome positioning plays a key role in genomic regulation by defining histone-DNA context and by modulating access to specific sites. Moreover, the histone-DNA register influences the double-helix structure, which in turn can affect the association of small molecules and protein factors. Analysis of genomic and synthetic DNA has revealed sequence motifs that direct nucleosome positioning in vitro; thus, establishing the basis for the DNA sequence dependence of positioning would shed light on the mechanics of the double helix and its contribution to chromatin structure in vivo. However, acquisition of well-diffracting nucleosome core particle (NCP) crystals is extremely dependent on the DNA fragment used for assembly, and all previous NCP crystal structures have been based on human α-satellite sequences. Here, we describe the crystal structures of Xenopus NCPs containing one of the strongest known histone octamer binding and positioning sequences, the so-called ‘601’ DNA.Two distinct 145-bp 601 crystal forms display the same histone-DNA register, which coincides with the occurrence of DNA stretching-overtwisting in both halves of the particle around five double-helical turns from the nucleosome center, giving the DNA an ‘effective length’ of 147 bp. As we have found previously with stretching around two turns from the nucleosome center for a centromere-based sequence, the terminal stretching observed in the 601 constructs is associated with extreme kinking into the minor groove at purine-purine (pyrimidine-pyrimidine) dinucleotide steps. In other contexts, these step types display an overall nonflexible behavior, which raises the possibility that DNA stretching in the nucleosome or extreme distortions in general have unique sequence dependency characteristics. Our findings indicate that DNA stretching is an intrinsically predisposed site-specific property of the nucleosome and suggest how NCP crystal structures with diverse DNA sequences can be obtained.  相似文献   

20.
Unique translational positioning of nucleosomes on synthetic DNAs.   总被引:2,自引:0,他引:2       下载免费PDF全文
A computational study was previously carried out to analyze DNA sequences that are known to position histone octamers at single translational sites. A conserved pattern of intrinsic DNA curvature was uncovered that was proposed to direct the formation of nucleosomes to unique positions. The pattern consists of two regions of curved DNA separated by preferred lengths of non-curved DNA. In the present study, 11 synthetic DNAs were constructed which contain two regions of curved DNA of the form [(A5.T5)(G/C)5]4 separated by non-curved regions of variable length. Translational mapping experiments of in vitro reconstituted mononucleosomes using exonuclease III, micrococcal nuclease and restriction enzymes demonstrated that two of the fragments positioned nucleosomes at a single site while the remaining fragments positioned octamers at multiple sites spaced at 10 base intervals. The synthetic molecules that positioned nucleosomes at a single site contain non-curved central regions of the same lengths that were seen in natural nucleosome positioning sequences. Hydroxyl radical and DNase I digests of the synthetic DNAs in reconstituted nucleosomes showed that the synthetic curved element on one side of the nucleosomal dyad assumed a rotational orientation where narrow minor grooves of the A-tracts faced the histone surface with all molecules. In contrast, the curved element on the other side of the nucleosome displayed variable rotational orientations between molecules which appeared to be related to the positioning effect. These results suggest that asymmetry between the two halves of nucleosomal DNA may facilitate translational positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号