首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions have been selected for a reversed-phase high-performance liquid chromatographic assay of intermediate products formed in the course of utilization of toluene by Pseudomonas putida. The composition of products indicates that degradation of toluene by strain BS590-P proceeds primarily through the formation of benzoate and catechol. This is followed by degradation of catechol via ortho-cleavage. In strain BS3701-P, toluene oxidation involves both the side chain and the aromatic ring.  相似文献   

2.
The genetic control of naphthalene, phenanthrene, and anthracene biodegradation was studied in three Pseudomonas putida strains isolated from coal tar- and oil-contaminated soils. These strains isolated from different geographical locations contained similar catabolic plasmids controlling the first steps of naphthalene conversion to salicylate (the nah1operon), functionally inoperative salicylate hydroxylase genes, and genes of the metha-pathway of catechol degradation (the nah2 operon). Salicylate oxidation in these strains is determined by genes located in trans-position relative to the nah1 operon: in strains BS202 and BS3701, they are located on the chromosome, and in the strain BS3790, on the second plasmid.  相似文献   

3.
Summary A strain of Achromobacter utilized 1-Naphthyl-N-methyl carbamate (Sevin, Carbaryl) as the sole source of carbon in salt medium. Four degradation products of sevin were identified to be 1-naphthol, hydroquinone, catechol and pyruvate. The organism grew on 1-naphthol, hydroquinone and catechol.  相似文献   

4.

The cooperation of Bacillus subtilis strain DKT and Comamonas testosteroni KT5 was investigated for biofilm development and toluenes and chlorobenzenes degradation. Bacillus subtilis strain DKT and C. testosteroni KT5 were co-cultured in liquid media with toluenes and chlorobenzenes to determine the degradation of these substrates and formation of dual-species biofilm used for the degradation process. Bacillus subtilis strain DKT utilized benzene, mono- and dichlorinated benzenes as carbon and energy sources. The catabolism of chlorobenzenes was via hydroxylation, in which chlorine atoms were replaced by hydroxyl groups to form catechol, followed by ring fission via the ortho-cleavage pathway. The investigation of the dual-species biofilm composed of B. subtilis DKT and C. testosteroni KT5 (a toluene and chlorotoluene-degrading isolate with low biofilm formation) showed that B. subtilis DKT synergistically promoted C. testosteroni KT5 to develop biofilm. The bacterial growth in dual-species biofilm overcame the inhibitory effects caused by monochlorobenzene and 2-chlorotoluene. Moreover, the dual-species biofilm showed effective degradability toward the mixture of these substrates. This study provides knowledge about the commensal relationships in a dual-culture biofilm for designing multispecies biofilms applied for the biodegradation of toxic organic substrates that cannot be metabolized by single-organism biofilms.

  相似文献   

5.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

6.
Sixteen spore forming Gram-positive bacteria were isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. These strains were identified as belonging to the genus Bacillus using classical biochemical techniques and API 50CH kits, and their identity was confirmed by sequencing of part of the 16S rRNA gene. All strains were tested for oil degradation ability in microplates using Arabian Light and Marlin oils and only seven strains showed positive results in both kinds of oils. They were also able to grow in the presence of carbazole, n-hexadecane and polyalphaolefin (PAO), but not in toluene, as the only carbon sources. The production of key enzymes involved with aromatic hydrocarbons biodegradation process by Bacillus strains (catechol 1,2-dioxygenase and catechol 2,3-dioxygenase) was verified spectrophotometrically by detection of cis,cis-muconic acid and 2-hydroxymuconic semialdehyde, and results indicated that the ortho ring cleavage pathway is preferential. Furthermore, polymerase chain reaction (PCR) products were obtained when the DNA of seven Bacillus strains were screened for the presence of catabolic genes encoding alkane monooxygenase, catechol 1,2-dioxygenase, and/or catechol 2,3-dioxygenase. This is the first study on Bacillus strains isolated from an oil reservoir in Brazil.  相似文献   

7.
The functional and phylogenetic biodiversity of bacterial communities in a benzene, toluene, ethylbenzene and xylene (BTEX)-polluted groundwater was analysed. To evaluate the feasibility of using an air sparging treatment to enhance bacterial degradative capabilities, the presence of degrading microorganisms was monitored. The amplification of gene fragments corresponding to toluene monooxygenase (tmo), catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and toluene dioxygenase genes in DNA extracted directly from the groundwater samples was associated with the presence of indigenous degrading bacteria. Five months of air injection reduced species diversity in the cultivable community (as calculated by the Shannon-Weaver index), while little change was noted in the degree of biodiversity in the total bacterial community, as characterised by denaturing gradient gel electrophoresis (DGGE) analysis. BTEX-degrading strains belonged to the genera Pseudomonas, Microbacterium, Azoarcus, Mycobacterium and Bradyrhizobium. The degrading capacities of three strains in batch liquid cultures were also studied. In some of these microorganisms different pathways for toluene degradation seemed to operate simultaneously. Pseudomonas strains of the P24 operational taxonomic unit, able to grow only on catechol and not on BTEX, were the most abundant, and were present in the groundwater community at all stages of treatment, as evidenced both by cultivation approaches and by DGGE profiles. The presence of different tmo-like genes in phylogenetically distant strains of Pseudomonas, Mycobacterium and Bradyrhizobium suggested recent horizontal gene transfer in the groundwater.  相似文献   

8.
Four new Gram-positive, phenol-degrading strains were isolated from the rhizospheres of endemorelict plants Ramonda serbica and Ramonda nathaliae known to exude high amounts of phenolics in the soil. Isolates were designated Bacillus sp. PS1, Bacillus sp. PS11, Streptomyces sp. PS12, and Streptomyces sp. PN1 based on 16S rDNA sequence and biochemical analysis. In addition to their ability to tolerate and utilize high amounts of phenol of either up to 800 or up to 1,400 mg l−1 without apparent inhibition in growth, all four strains were also able to degrade a broad range of aromatic substrates including benzene, toluene, ethylbenzene, xylenes, styrene, halogenated benzenes, and naphthalene. Isolates were able to grow in pure culture and in defined mixed culture on phenol and on the mixture of BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds as a sole source of carbon and energy. Pure culture of Bacillus sp. PS11 yielded 1.5-fold higher biomass amounts in comparison to mixed culture, under all conditions. Strains successfully degraded phenol in the soil model system (2 g kg−1) within 6 days. Activities of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxygenase were detected and analyzed from the crude cell extract of the isolates. While all four strains use ortho degradation pathway, enzyme indicative of meta degradation pathway (catechol 2,3-dioxygenase) was also detected in Bacillus sp. PS11 and Streptomyces sp. PN1. Phenol degradation activities were induced 2 h after supplementation by phenol, but not by catechol. Catechol slightly inhibited activity of catechol 2,3-dioxygenase in strains PS11 and PN1.  相似文献   

9.
Pseudomonas testosteroni H-8 oxidizes certain lower alkylbenzene sulfonates at rates inversely related to the length of the alkyl group. Appreciable Q(O)2 values were observed for benzene sulfonate (BS), toluene sulfonate (TS), and ethylbenzene sulfonate (EBS), but not for propylbenzene sulfonate (PS) and higher homologues. Catechol oxidation was catalyzed by a constitutive catechol-2,3-oxygenase (EC 1.99.2.a). Yellow meta cleavage products accumulated when BS-grown cells were exposed to catechol, 4-methylcatechol, 3-methylcatechol, EBS and PS, but not BS or TS. Traces of a yellow metabolite (probably 2-hydroxymuconic semialdehyde) were detectable during growth on BS. PS completely inhibited growth on BS, but not on L-leucine or nutrient broth. Also, PS antagonized respiration on BS and catechol, but not glutamate, the extent of inhibition being directly related to PS concentration. Formation of a meta cleavage product from PS, and inhibition of catechol oxidation by PS, suggested that the actual inhibitor may not be PS itself, but a metabolite.  相似文献   

10.
A novel metabolic pathway was found in the yeast Trichosporon moniliiforme WU-0401 for salicylate degradation via phenol as the key intermediate. When 20 mM salicylate was used as the sole carbon source for the growth of strain WU-0401, phenol was detected as a distinct metabolite in the culture broth. Analysis of the products derived from salicylate or phenol through reactions with resting cells and a cell-free extract of strain WU-0401 indicated that salicylate is initially decarboxylated to phenol and then oxidized to catechol, followed by aromatic ring cleavage to form cis-cis muconate.  相似文献   

11.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   

12.
Yu H  Kim BJ  Rittmann BE 《Biodegradation》2001,12(6):455-463
Several types of biodegradation experiments with benzene, toluene, or p-xylene show accumulation of intermediates by Pseudomonas putida F1. Under aerobic conditions, the major intermediates identified for benzene, toluene, and p-xylene are catechol, 3-methylcatechol, and 3,6-dimethylcatechol, respectively. Oxidations of catechol and 3-methylcatechol are linked to biomass synthesis. When oxygen is limited in the system, phenol (from benzene) and m-cresol and o-cresol (from toluene) accumulate.  相似文献   

13.
Burkholderia sp. AA1 isolated from a diesel fuel-contaminated site degraded toluene, as well as a wide range of alkanes from decane (C8) to pentacosane (C25) as sole carbon and energy sources. This strain also utilized m-toluate, p-toluate, o-toluate, and m-cresol as sole carbon and energy sources. Toluene- and toluate-grown cells showed catechol 2,3-dioxygenase activity and indole oxidation activity that is exhibited by some toluene oxygenation enzymes. The catechol 2,3-dioxygenase gene (catB) was cloned and sequenced. Its deduced amino acid sequence is analogous to the extradiol dioxygenases cloned from a variety of microorganisms. A DNA fragment containing the genes for the indole oxidation activity was cloned and sequenced. A seven-gene cluster designated as tbhABCDEFG was identified. Significant similarities were found with multicomponent monooxygenase systems for toluene, benzene and phenol from different bacterial strains. Journal of Industrial Microbiology & Biotechnology (2000) 25, 127–131. Received 28 July 1999/ Accepted in revised form 28 June 2000  相似文献   

14.
Summary The degradation of fluoranthene by pure cultures of Alcaligenes denitrificanss WW1, isolated from contaminated soil samples, was investigated. The strain showed maximum degradation rates of 0.3 mg fluoranthene/ml per day. A denitrificans was able to utilize also naphthalene, 1- and 2-methylnaphthalene, phenanthrene, and anthracene as sole carbon sources and to co-metabolize fuuorence, pyrene, and benzo(a)anthracene. During growth on fluoranthene in batch culture two metabolic products that were completely degraded before growth entered the stationary phase were detected in the culture fluid. Anslyses by UV, mass and NMR spectroscopy identified the products as acenaphthenone and 3-hydroxymethyl-4,5-benzocoumarine. Fluoranthene-grown resting cells of A. denitrificans showed degradative activity towards 2,3-dihydroxybenzoic acid, pyrogallol, salicylic acid, and catechol. The enzymatic activities in extracts of fluoranthene-induced cells indicate a meta ring fission involved in the degradation of fluoranthene. From these data new aspects of the biodegradative pathway of fluoranthene have been predicted.  相似文献   

15.
The stability of Pseudomonas putida F1, a strain harbouring the genes responsible for toluene degradation in the chromosome was evaluated in a bioscrubber under high toluene loadings and nitrogen limiting conditions at two dilution rates (0.11 and 0.27 h−1). Each experiment was run for 30 days, period long enough for microbial instability to occur considering previously reported studies carried out with bacterial strains encoding the catabolic genes in the TOL plasmid. At all tested conditions, P. putida F1 exhibited stable performance as shown by the constant values of the specific toluene degradation yield, CO2 produced versus toluene degraded yield, and biomass concentration within each steady state. Benzyl alcohol, a curing agent causing TOL plasmid deletion in Pseudomonas strains, was present in the cultivation medium as a result of the monooxygenation of toluene by the diooxygenase system of P. putida F1. However, no mutant population growing at the expense of the extracellular excreted carbon or lysis products was established in the chemostat as confirmed by the constant dissolved total organic carbon (TOC) concentration and fraction of toluene degrading cells (approx. 100%). In addition, batch experiments conducted with both lysis substrate and toluene simultaneously confirmed that P. putida F1 preferentially consumed toluene rather than extracellular excreted carbon.  相似文献   

16.
Pseudomonas sp. strain NyZ402 was isolated for its ability to grow on para-nitrophenol (PNP) as a sole source of carbon, nitrogen, and energy, and was shown to degrade PNP via an oxidization pathway. This strain was also capable of growing on hydroquinone or catechol. A 15, 818 bp DNA fragment extending from a 800-bp DNA fragment of hydroxyquinol 1,2-dioxygenase gene (pnpG) was obtained by genome walking. Sequence analysis indicated that the PNP catabolic gene cluster (pnpABCDEFG) in this fragment shared significant similarities with a recently reported gene cluster responsible for PNP degradation from Pseudomonas sp. strain WBC-3. PnpA is PNP 4-monooxygenase converting PNP to hydroquinone via benzoquinone in the presence of NADPH, and genetic analysis indicated that pnpA plays a key role in PNP degradation. pnpA1 present in the upstream of the cluster (absent in the cluster from strain WBC-3) encodes a protein sharing as high as 55% identity with PnpA, but was not involved in PNP degradation by either in vitro or in vivo analyses. Furthermore, an engineered strain capable of growing on PNP and ortho-nitrophenol (ONP) was constructed by introducing onpAB (encoding ONP monooxygenase and ortho-benzoquinone reductase which catalyzed the transformation of ONP to catechol) from Alcaligenes sp. strain NyZ215 into strain NyZ402.  相似文献   

17.
Lately, there has been a special interest in understanding the role of halophilic and halotolerant organisms for their ability to degrade hydrocarbons. The focus of this study was to investigate the genes and enzymes involved in the initial steps of the benzene degradation pathway in halophiles. The extremely halophilic bacteria Arhodomonas sp. strain Seminole and Arhodomonas sp. strain Rozel, which degrade benzene and toluene as the sole carbon source at high salinity (0.5 to 4 M NaCl), were isolated from enrichments developed from contaminated hypersaline environments. To obtain insights into the physiology of this novel group of organisms, a draft genome sequence of the Seminole strain was obtained. A cluster of 13 genes predicted to be functional in the hydrocarbon degradation pathway was identified from the sequence. Two-dimensional (2D) gel electrophoresis and liquid chromatography-mass spectrometry were used to corroborate the role of the predicted open reading frames (ORFs). ORFs 1080 and 1082 were identified as components of a multicomponent phenol hydroxylase complex, and ORF 1086 was identified as catechol 2,3-dioxygenase (2,3-CAT). Based on this analysis, it was hypothesized that benzene is converted to phenol and then to catechol by phenol hydroxylase components. The resulting catechol undergoes ring cleavage via the meta pathway by 2,3-CAT to form 2-hydroxymuconic semialdehyde, which enters the tricarboxylic acid cycle. To substantiate these findings, the Rozel strain was grown on deuterated benzene, and gas chromatography-mass spectrometry detected deuterated phenol as the initial intermediate of benzene degradation. These studies establish the initial steps of the benzene degradation pathway in halophiles.  相似文献   

18.
Three aerobic bacterial consortia GY2, GS3 and GM2 were enriched from polycyclic aromatic hydrocarbon-contaminated soils with water-silicone oil biphasic systems. An aerobic bacterial strain utilizing phenanthrene as the sole carbon and energy source was isolated from bacterial consortium GY2 and identified as Sphingomonas sp. strain GY2B. Within 48 h and at 30°C the strain metabolized 99.1% of phenanthrene (100 mg/l) added to batch culture in mineral salts medium and the cell number increased by about 40-fold. Three metabolites 1-hydroxy-2-naphthoic acid, 1-naphthol and salicylic acid, were identified by gas chromatographic mass spectrometry and UV–visible spectroscopy analysis. A degradation pathway was proposed based on the identified metabolites. In addition to phenanthrene, strain GY2B could use other aromatic compounds such as naphthalene, 2-naphthol, salicylic acid, catechol, phenol, benzene and toluene as a sole source of carbon and energy.  相似文献   

19.
Degradation of phenanthrene by strains Pseudomona, Moscow, KMK, 2004simova, I.A. and Chernov, I.s putida BS3701 (pBS1141, pBS1142), Pseudomonas putida BS3745 (pBS216), and Burkholderia sp. BS3702 (pBS1143) were studied in model soil systems. The differences in accumulation and uptake rate of phenanthrene intermediates between the strains under study have been shown. Accumulation of 1-hydroxy-2-naphthoic acid in soil in the course of phenanthrene degradation by strain BS3702 (pBS1143) in a model system has been revealed. The efficiency of phenanthrene biodegradation was assessed using the mathematical model proposed previously for assessment of naphthalene degradation efficiency. The efficiency of degradation of both phenanthrene and the intermediate products of its degradation in phenanthrene-contaminated soil is expected to increase with the joint use of strains P. Putida BS3701 (pBS1141, pBS1142) and Burkholderia sp. BS3702 (pBS1143).  相似文献   

20.
Pseudomonas putida strain BNF1 was isolated to degrade aromatic hydrocarbons efficiently and use phenol as a main carbon and energy source to support its growth. Catechol 2,3-dioxygenase was found to be the responsible key enzyme for the biodegradation of aromatic hydrocarbons. Catechol 2,3-dioxygenase gene was cloned from plasmid DNA of P. putida strain BNF1. The nucleotide base sequence of a 924 bp segment encoding the catechol 2,3-dioxygenase (C23O) was determined. This segment showed an open reading frame, which encoded a polypeptide of 307 amino acids. C23O gene was inserted into NotI-cut transposon vector pUT/mini-Tn5 (Kmr) to get a novel transposon vector pUT/mini-Tn5-C23O. With the helper plasmid PRK2013, the transposon vector pUT/mini-Tn5-C23O was introduced into one alkanes degrading strain Acinetobacter sp. BS3 by triparental conjugation, and then the C23O gene was integrated into the chromosome of Acinetobacter sp. BS3. And the recombinant BS3-C23O, which could express catechol 2,3-dioxygenase protein, was obtained. The recombinant BS3-C23O was able to degrade various aromatic hydrocarbons and n-alkanes. Broad substrate specificity, high enzyme activity, and the favorable stability suggest that the BS3-C23O was a potential candidate used for the biodegradation of crude oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号