首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic tail of the measles virus (MV) fusion (F) protein is often altered in viruses which spread through the brain of patients suffering from subacute sclerosing panencephalitis (SSPE). We transferred the coding regions of F tails from SSPE viruses in an MV genomic cDNA. Similarly, we constructed and transferred mutated tail-encoding regions of the other viral glycoprotein hemagglutinin (H) gene. From the mutated genomic cDNAs, we achieved rescue of viruses that harbor different alterations of the F tail, deletions in the membrane-distal half of the H tail, and combinations of these mutations. Viruses with alterations in any of the tails spread rapidly through the monolayer via enhanced cell-cell fusion. Double-tail mutants had even higher fusion competence but slightly decreased infectivity. Analysis of the protein composition of released mutant viral particles indicated that the tails are necessary for accurate virus envelope assembly and suggested a direct F tail-matrix (M) protein interaction. Since even tail-altered glycoproteins colocalized with M protein in intracellular patches, additional interactions may exist. We conclude that in MV infections, including SSPE, the glycoprotein tails are involved not only in virus envelope assembly but also in the control of virus-induced cell fusion.  相似文献   

2.
Moll M  Klenk HD  Maisner A 《Journal of virology》2002,76(14):7174-7186
The generation of replication-competent measles virus (MV) depends on the incorporation of biologically active, fusogenic glycoprotein complexes, which are required for attachment and penetration into susceptible host cells and for direct virus spread by cell-to-cell fusion. Whereas multiple studies have analyzed the importance of the ectodomains of the MV glycoproteins hemagglutinin (H) and fusion protein (F), we have investigated the role of the cytoplasmic tails of the F and H proteins for the formation of fusogenic complexes. Deletions in the cytoplasmic tails of transiently expressed MV glycoproteins were found to have varying effects on receptor binding, fusion, or fusion promotion activity. F tail truncation to only three amino acids did not affect fusion capacity. In contrast, truncation of the H cytoplasmic tail was limited. H protein mutants with cytoplasmic tails of <14 residues no longer supported F-mediated cell fusion, predominantly due to a decrease in surface expression and receptor binding. This indicates that a minimal length of the H protein tail of 14 amino acids is required to ensure a threshold local density to have sufficient accumulation of fusogenic H-F complexes. By using reverse genetics, a recombinant MV with an F tail of three amino acids (rMV-FcDelta30), as well as an MV with an H tail of 14 residues (rMV-HcDelta20), could be rescued, whereas generation of viruses with shorter H tails failed. Thus, glycoprotein truncation does not interfere with the successful generation of recombinant MV if fusion competence is maintained.  相似文献   

3.
Naim HY  Ehler E  Billeter MA 《The EMBO journal》2000,19(14):3576-3585
In polarized epithelial cells measles virus (MV) is predominantly released at the apical cell surface, irrespective of the sorting of its two envelope glycoproteins F and H. It has been reported previously that the viral matrix (M) protein modulates the fusogenic capacity of the viral envelope glycoproteins. Here, extant MV mutants and chimeras were used to determine the role of M protein in the transport of viral glycoproteins and release of progeny virions in polarized epithelial CaCo2 cells. In the absence of M, envelope glycoproteins are sorted to the basolateral surface, suggesting that they possess intrinsic basolateral sorting signals. However, interactions of M with the glycoprotein cytoplasmic tails allow M-glycoprotein co-segregation to the apical surface, suggesting a vectorial function of M to retarget the glycoproteins for apical virion release. Whereas this may allow virus airway shedding, the intrinsic sorting of the glycoproteins to the basolateral surface may account for systemic host infection by allowing efficient cell-cell fusion.  相似文献   

4.
To understand the molecular determinants of measles virus (MV) cytopathicity, we have characterized mutant viruses exhibiting a more-extensive cell-to-cell fusion while maintaining efficient replication to high titers. A virus which is modified by the addition of an 8-amino-acid Flag epitope tag at the cytoplasmic tail of its H (for MV hemagglutinin) envelope glycoprotein replicates efficiently, has an increased cytopathicity, possesses a greater infectivity per particle, and has an altered protein composition compared with that of unmodified MV. The mutant phenotype is not specifically linked to the epitope sequence, since an alternatively added HA (for influenza virus-derived hemagglutinin) epitope tag caused similar effects. We demonstrate that both epitope tags weaken the interaction between the H and fusion (F) glycoproteins in virus-infected cells. This reduction in strength of H/F interaction is independent of the presence of the viral matrix (M) protein. Viruses with this less stable complex are more sensitive to neutralization by a soluble octameric form of the CD46 receptor, consistent with their increased fusogenicity. Similar analyses of glycoproteins derived from MV strains with reduced cytopathicities confirm that the strength of H and F glycoprotein interaction is a modulator of viral fusogenicity.  相似文献   

5.
Zhang J  Pekosz A  Lamb RA 《Journal of virology》2000,74(10):4634-4644
Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt- or NAt-) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M(1)) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt- or NAt- virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M(2) protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt- and NAt- is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt- and NAt- viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition.  相似文献   

6.
The efficient release of many enveloped viruses from cells involves the coalescence of viral components at sites of budding on the plasma membrane of infected cells. This coalescence is believed to require interactions between the cytoplasmic tails of surface glycoproteins and the matrix (M) protein. For the paramyxovirus simian virus 5 (SV5), the cytoplasmic tail of the hemagglutinin-neuraminidase (HN) protein has been shown previously to be important for normal virus budding. To investigate a role for the cytoplasmic tail of the fusion (F) protein in virus assembly and budding, we generated a series of F cytoplasmic tail-truncated recombinant viruses. Analysis of these viruses in tissue culture indicated that the cytoplasmic tail of the F protein was dispensable for normal virus replication and budding. To investigate further the requirements for assembly and budding of SV5, we generated two double-mutant recombinant viruses that lack 8 amino acids of the predicted 17-amino-acid HN protein cytoplasmic tail in combination with truncation of either 10 or 18 amino acids from the predicted 20-amino-acid F protein cytoplasmic tail. Both of the double mutant recombinant viruses displayed a replication defect in tissue culture and a budding defect, the extent of which was dependent on the length of the remaining F cytoplasmic tail. Taken together, this work and our earlier data on virus-like particle formation (A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, J. Virol. 76:3953-3964, 2002) suggest a redundant role for the cytoplasmic tails of the HN and F proteins in virus assembly and budding.  相似文献   

7.
H Jin  G P Leser  J Zhang    R A Lamb 《The EMBO journal》1997,16(6):1236-1247
The cytoplasmic tails of the influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA) are highly conserved in sequence for all virus subtypes and it is believed that assembly of this enveloped virus depends on interactions of these domains with cytoplasmic viral components. However, it is possible to rescue altered influenza viruses lacking either the HA or NA cytoplasmic tails. We have obtained an influenza virus that lacks both the cytoplasmic tail of HA and NA. Particle production is reduced approximately 10-fold but these particles, although having a fairly normal protein composition, are greatly elongated and of extended irregular shape. We propose a model in which the interactions of the cytoplasmic tails of HA and NA with an internal viral component are so important for spherical virion shape that there is dual redundancy in the interactions.  相似文献   

8.
Enveloped viruses are released from infected cells after coalescence of viral components at cellular membranes and budding of membranes to release particles. For some negative-strand RNA viruses (e.g., vesicular stomatitis virus and Ebola virus), the viral matrix (M) protein contains all of the information needed for budding, since virus-like particles (VLPs) are efficiently released from cells when the M protein is expressed from cDNA. To investigate the requirements for budding of the paramyxovirus simian virus 5 (SV5), its M protein was expressed in mammalian cells, and it was found that SV5 M protein alone could not induce vesicle budding and was not secreted from cells. Coexpression of M protein with the viral hemagglutinin-neuraminidase (HN) or fusion (F) glycoproteins also failed to result in significant VLP release. It was found that M protein in the form of VLPs was only secreted from cells, with an efficiency comparable to authentic virus budding, when M protein was coexpressed with one of the two glycoproteins, HN or F, together with the nucleocapsid (NP) protein. The VLPs appeared similar morphologically to authentic virions by electron microscopy. CsCl density gradient centrifugation indicated that almost all of the NP protein in the cells had assembled into nucleocapsid-like structures. Deletion of the F and HN cytoplasmic tails indicated an important role of these cytoplasmic tails in VLP budding. Furthermore, truncation of the HN cytoplasmic tail was found to be inhibitory toward budding, since it prevented coexpressed wild-type (wt) F protein from directing VLP budding. Conversely, truncation of the F protein cytoplasmic tail was not inhibitory and did not affect the ability of coexpressed wt HN protein to direct the budding of particles. Taken together, these data suggest that multiple viral components, including assembled nucleocapsids, have important roles in the paramyxovirus budding process.  相似文献   

9.
As we have shown previously, release of measles virus (MV) from polarized epithelial cells is not determined by the viral envelope proteins H and F. Although virus budding is restricted to the apical surfaces, both proteins were abundantly expressed on the basolateral surface of Madin-Darby canine kidney cells. In this report, we provide evidence that the basolateral expression of the viral proteins is of biological importance for the MV infection of polarized epithelial cells. We demonstrate that both MV glycoproteins possess a basolateral targeting signal that is dependent upon the unique tyrosine in the cytoplasmic tails. These tyrosines are shown to be also part of an endocytosis signal. In MV-infected cells, internalization of the glycoproteins was not observed, indicating that recognition of the endocytosis signals is disturbed by viral factors. In contrast, basolateral transport was not substantially hindered, resulting in efficient cell-to-cell fusion of polarized Madin-Darby canine kidney cells. Thus, recognition of the signals for endocytosis and polarized transport is differently regulated in infected cells. Mutation of the basolateral sorting signal in one of the MV glycoproteins prevented fusion of polarized cells. These results suggest that basolateral expression of the MV glycoproteins favors virus spread in epithelia.  相似文献   

10.
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.  相似文献   

11.
The fusion (F) glycoproteins of measles virus strains Edmonston (MV-Edm) and wtF (MV-wtF) confer distinct cytopathic effects and strengths of hemagglutinin (H) interaction on a recombinant MV-Edm virus. They differ in just two amino acids, V94 and V101 in F-Edm versus M94 and F101 in F-wtF, both of which lie in the relatively uncharacterized F(2) domain. By comparing the sequence of MV F with those of the parainfluenza virus SV5 and Newcastle disease virus (NDV) F proteins, the structures of which are known, we show that MV F(2) also possesses a potential heptad repeat (HR) C domain. In NDV, the N-terminal half of HR-C interacts with HR-A in F(1) while the C-terminal half is induced to kink outward by a central proline residue. We found that this proline is part of an LXP motif conserved in all three viruses. Folding and transport of MV F require this motif to be intact and also require covalent interaction of cysteine residues that probably support the potential HR-A-HR-C interaction. Amino acids 94 and 101, both located in "d" positions of the HR-C helical wheel, lie in the potentially outwardly kinked region. We demonstrate that their effect on MV fusogenicity and glycoprotein interaction is mediated solely by amino acid 94. Substitutions at position 94 with polar or charged amino acids are tolerated poorly or not at all, while changes to smaller and more hydrophilic amino acids are tolerated in both transiently expressed F protein and recombinant virus. MV F V94A and MV F V94G viruses induce extensive syncytium formation and are relatively, or almost completely, resistant to a known inhibitor of MV glycoprotein-induced fusion. We propose that the conformational changes in MV F protein required to expose the fusion peptide involve the C-terminal half of the HR-C helix, specifically amino acid 94.  相似文献   

12.
Clinical isolates of measles virus (MV) use signaling lymphocyte activation molecule (SLAM) as a cellular receptor, whereas vaccine and laboratory strains may utilize the ubiquitously expressed CD46 as an additional receptor. MVs also infect, albeit inefficiently, SLAM(-) cells, via a SLAM- and CD46-independent pathway. Our previous study with recombinant chimeric viruses revealed that not only the receptor-binding hemagglutinin (H) but also the matrix (M) protein of the Edmonston vaccine strain can confer on an MV clinical isolate the ability to grow well in SLAM(-) Vero cells. Two substitutions (P64S and E89K) in the M protein which are present in many vaccine strains were found to be responsible for the efficient growth of recombinant virus in Vero cells. Here we show that the P64S and E89K substitutions allow a strong interaction of the M protein with the cytoplasmic tail of the H protein, thereby enhancing the assembly of infectious particles in Vero cells. These substitutions, however, are not necessarily advantageous for MVs, as they inhibit SLAM-dependent cell-cell fusion, thus reducing virus growth in SLAM(+) B-lymphoblastoid B95a cells. When the cytoplasmic tail of the H protein is deleted, a virus with an M protein possessing the P64S and E89K substitutions no longer grows well in Vero cells yet causes cell-cell fusion and replicates efficiently in B95a cells. These results reveal a novel mechanism of adaptation and attenuation of MV in which the altered interaction of the M protein with the cytoplasmic tail of the H protein modulates MV growth in different cell types.  相似文献   

13.
14.
Wild-type, lymphotropic strains of measles virus (MV) and tissue culture-adapted MV vaccine strains possess different cell tropisms. This observation has led to attempts to identify the viral receptors and to characterize the functions of the MV glycoproteins. We have functionally analyzed the interactions of MV hemagglutinin (H) and fusion (F) proteins of vaccine (Edmonston) and wild-type (WTF) strains in different combinations in transfected cells. Cell-cell fusion occurs when both Edmonston F and H proteins are expressed in HeLa or Vero cells. The expression of WTF glycoproteins in HeLa cells did not result in syncytia, yet they fused efficiently with cells of lymphocytic origin. To further investigate the role of the MV glycoproteins in virus cell entry and also the role of other viral proteins in cell tropism, we generated recombinant vaccine MVs containing one or both glycoproteins from WTF. These viruses were viable and grew similarly in lymphocytic cells. Recombinant viruses expressing the WTFH protein showed a restricted spread in HeLa cells but spread efficiently in Vero cells. Parental WTF remained restricted in both cell types. Therefore, not only differential receptor usage but also other cell-specific factors are important in determining MV cell tropism.  相似文献   

15.
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.  相似文献   

16.
The endoplasmic reticulum (ER) was investigated as the initial oligomerization site for the envelope glycoproteins H and F of measles virus (MV), a clinically relevant member of the Paramyxoviridae family, and consequences of this interaction for viral replication were studied. Both proteins were tagged at their cytosolic tails with RRR and KKXX motifs, respectively, resulting in their efficient retention in the ER. Co-transfection of the retained constructs with transport competent MV glycoproteins revealed a dominant negative effect on their biological activity indicating intracellular complex formation and thus retention. Pulse-chase analysis and co-immunoprecipitation experiments demonstrated that this effect is based on both homo- and hetero-oligomerization in the ER. Recombinant viruses additionally expressing ER-retained F showed an altered cytopathic phenotype accompanied by greatly reduced particle release. Similar mutant viruses additionally expressing ER-retained H could not be rescued indicating an even greater negative effect of this protein on virus viability. Our study suggests that both homo- and hetero-oligomerization of MV glycoproteins occur in the ER and that these events are of significance for early steps of particle assembly.  相似文献   

17.
The pH-independent fusion of membranes induced by measles virus (MV) requires, in addition to the fusion-competent protein F, hemagglutinin (H), and on the target membrane, the virus receptor CD46. We constructed hybrid receptors composed of different numbers and combinations of the four CD46 short consensus repeat (SCR) domains, followed by immunoglobulin-like domains of another cell surface protein, CD4. Hybrid proteins containing SCRs I and II bound MV particles and conferred fusion competence to rodent cells. SCRs III and/or IV strengthened MV binding. Increasing the distance between the MV binding site and the transmembrane domain enhanced virus binding but reduced fusion efficiency. A hybrid protein predicted to be about 120 Angstroms (12 nm) longer than the standard receptor lost fusion support function and was dominant negative over a functional receptor. These data indicate that receptor protein length influences virus binding and determines fusion efficiency.  相似文献   

18.
Efficient assembly of enveloped viruses at the plasma membranes of virus-infected cells requires coordination between cytosolic viral components and viral integral membrane glycoproteins. As viral glycoprotein cytoplasmic domains may play a role in this coordination, we have investigated the importance of the hemagglutinin-neuraminidase (HN) protein cytoplasmic domain in the assembly of the nonsegmented negative-strand RNA paramyxovirus simian virus 5 (SV5). By using reverse genetics, recombinant viruses which contain HN with truncated cytoplasmic tails were generated. These viruses were shown to be replication impaired, as judged by small plaque size, reduced replication rate, and low maximum titers when compared to those features of wild-type (wt) SV5. Release of progeny virus particles from cells infected with HN cytoplasmic-tail-truncated viruses was inefficient compared to that of wt virus, but syncytium formation was enhanced. Furthermore, accumulation of viral proteins at presumptive budding sites on the plasma membranes of infected cells was prevented by HN cytoplasmic tail truncations. We interpret these data to indicate that formation of budding complexes, from which efficient release of SV5 particles can occur, depends on the presence of an HN cytoplasmic tail.  相似文献   

19.
Measles virus (MV) and canine distemper virus (CDV) are morbilliviruses that cause acute illnesses and several persistent central nervous system infections in humans and in dogs, respectively. Characteristically, the cytopathic effect of these viruses is the formation of syncytia in permissive cells. In this study, a vaccinia virus expression system was used to express MV and CDV hemagglutinin (HA) and fusion (F) envelope proteins. We found that cotransfecting F and HA genes of MV or F and HA genes of CDV resulted in extensive syncytium formation in permissive cells while transfecting either F or HA alone did not. Similar experiments with heterologous pairs of proteins, CDV-F with MV-HA or MV-F with CDV-HA, caused significant cell fusion in both cases. These results indicate that in this expression system, cell fusion requires both F and HA; however, the functions of these proteins are interchangeable between the two types of morbilliviruses. Human-mouse somatic hybrids were used to determine the human chromosome conferring susceptibility to either MV and CDV. Of the 12 hybrids screened, none were sensitive to MV. Two of the hybrids containing human chromosome 19 formed syncytia following CDV infection. In addition, these two hybrids underwent cell fusion when cotransfected with CDV-F and CDV-HA (but not MV-F and MV-HA) glycoproteins by using the vaccinia virus expression system. To discover the viral component responsible for cell specificity, complementation experiments coexpressing CDV-HA with MV-F or CDV-F with MV-HA in the CDV-sensitive hybrids were performed. We found that syncytia were formed only in the presence of CDV-HA. These results support the idea that the HA protein is responsible for cell tropism. Furthermore, while the F protein is necessary for the fusion process, it is interchangeable with the F protein from other morbilliviruses.  相似文献   

20.
We analyzed the roles of the individual measles virus (MV) surface glycoproteins in mediating functional and structural interactions with human CD46, the primary MV receptor. On one cell population, recombinant vaccinia virus vectors were used to produce the MV hemagglutinin (H) and fusion (F) glycoproteins. As fusion partner cells, various cell types were examined, without or with human CD46 (endogenous or recombinant vaccinia virus encoded). Fusion between the two cell populations was monitored by a quantitative reporter gene activation assay and by syncytium formation. MV glycoproteins promoted fusion with primate cells but not with nonprimate cells; recombinant CD46 rendered nonprimate cells competent for MV glycoprotein-mediated fusion. Markedly different fusion specificity was observed for another morbillivirus, canine distemper virus (CDV): recombinant CDV glycoproteins promoted fusion with primate and nonprimate cells independently of CD46. Fusion by the recombinant MV and CDV glycoproteins required coexpression of H plus F in either homologous or heterologous combinations. To assess the role of H versus F in determining the CD46 dependence of MV fusion, we examined the fusion specificities of cells producing heterologous glycoprotein combinations. The specificity of HMV plus FCDV paralleled that observed for the homologous MV glycoproteins: fusion occurred with primate cells but not with nonprimate cells unless they produced recombinant CD46. By contrast, the specificity of HCDV plus FMV paralleled that for the homologous CDV glycoproteins: fusion occurred with either primate or nonprimate cells with no dependence on CD46. Thus, for both MV and CDV, fusion specificity was determined by H. In particular, the results demonstrate a functional interaction between HMV and CD46. Flow cytometry and antibody coprecipitation studies provided a structural correlate to this functional interaction: CD46 formed a molecular complex with HMV but not with FMV or with either CDV glycoprotein. These results highlight the critical role of the H glycoprotein in determining MV specificity for CD46-positive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号