首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

2.
3.
When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression.  相似文献   

4.
To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation. [BMB Reports 2013; 46(6): 289-294]  相似文献   

5.
6.
7.
The Cdc25C phosphatase is a key activator of Cdc2/cyclin B that controls M-phase entry in eukaryotic cells. Here we discuss the regulation of Cdc25C by phosphorylation during the meiotic maturation of Xenopus oocytes. In G2 arrested oocytes, Cdc25C is phosphorylated on Ser287 and associated with 14-3-3 proteins. Entry of the oocytes into M-phase of meiosis is triggered by progesterone, which activates a signaling pathway leading to the dephosphorylation of Ser287, probably mediated by the PP1 phosphatase. The activation of Cdc25C during oocyte maturation correlates also with its phosphorylation on multiple sites. These phosphorylations involve several signaling pathways, including Polo kinases and MAP kinases, and might require also the inhibition of the PP2A phosphatase. Finally, Cdc25C is further phosphorylated by its substrate Cdc2/cyclin B, as part of an auto-amplification loop that ensures the high Cdc2/cyclin B activity level required to drive the oocyte through the meiotic cell cycle.  相似文献   

8.
Induction of G(2)/M phase transition in mitotic and meiotic cell cycles requires activation by phosphorylation of the protein phosphatase Cdc25. Although Cdc2/cyclin B and polo-like kinase (PLK) can phosphorylate and activate Cdc25 in vitro, phosphorylation by these two kinases is insufficient to account for Cdc25 activation during M phase induction. Here we demonstrate that p42 MAP kinase (MAPK), the Xenopus ortholog of ERK2, is a major Cdc25 phosphorylating kinase in extracts of M phase-arrested Xenopus eggs. In Xenopus oocytes, p42 MAPK interacts with hypophosphorylated Cdc25 before meiotic induction. During meiotic induction, p42 MAPK phosphorylates Cdc25 at T48, T138, and S205, increasing Cdc25's phosphatase activity. In a mammalian cell line, ERK1/2 interacts with Cdc25C in interphase and phosphorylates Cdc25C at T48 in mitosis. Inhibition of ERK activation partially inhibits T48 phosphorylation, Cdc25C activation, and mitotic induction. These findings demonstrate that ERK-MAP kinases are directly involved in activating Cdc25 during the G(2)/M transition.  相似文献   

9.
The relationship between the mitogen‐activated protein kinase response, nuclear factor‐κB (NFκB) expression and the apoptosis in human acute promyelocytic leukaemia NB4 cells treated with vinblastine was investigated in this work. Cell viability, subdiploid DNA and cell cycle were analysed by propidium iodide permeability and flow cytometry analyses. Apoptosis was determined by annexin V‐Fluorescein isothiocyanate assays. Western‐blot analysis was used for determination of expression levels of apoptotic factors (p53, Bax and Bcl2), intracellular kinases [serine/threonine‐specific protein kinase, extracellular signal‐regulated kinase and c‐Jun N‐terminal kinase (JNK)], NFκB factor and caspases. Electrophoretic mobility shift assay was usefully applied to study DNA‐NFκB interaction. In NB4 cells, vinblastine produces alteration of p53 and DNA fragmentation. Vinblastine treatment had an antiproliferative effect via the induction of apoptosis producing Bax/Bcl‐2 imbalance. Vinblastine treatment suppressed NFκB expression and depressed NFκB‐DNA binding activity while maintaining JNK activation that subsequently resulted in apoptotic response through caspase‐dependent pathway. Our study provides a possible anti‐cancer mechanism of vinblastine action on NB4 cells by deregulation of the intracellular signalling cascade affecting to JNK activation and NFκB expression. Moreover, JNK activation and NFκB depression can be very significant factors in apoptosis induction by vinblastine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Environmental factors have been implicated in the pathogenesis of neurodegenerative diseases. Maneb (MB) and mancozeb (MZ) have been extensively used as pesticides. Exposure to MB lowers the threshold for dopaminergic damage triggered by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine. MB and MZ potentiate 1‐methyl‐4‐phenylpyridium (MPP+)‐induced cytotoxicity in rat pheochromocytoma (PC12) cells partially via nuclear factor kappa B (NF‐κB) activation. RTP801 dramatically increased by oxidative stresses and DNA damage is the possible mechanism of neurotoxins‐induced cell death in many studies. This study demonstrated that MB and MZ induced DNA damage as seen in comet assay. The expressions of RTP801 protein and mRNA were elevated after MB and MZ exposures. By knocking down RTP801 using shRNA, we demonstrated that NF‐κB activation by MB and MZ was regulated by RTP801 and cell death triggered by MB and MZ was associated with RTP801 elevation. This revealed that the toxic mechanisms of dithiocarbamates are via the cross talk between RTP801 and NF‐κB.  相似文献   

12.
Mutations in more than 10 genes are reported to cause familial amyotrophic lateral sclerosis (ALS). Among these genes, optineurin (OPTN) is virtually the only gene that is considered to cause classical ALS by a loss‐of‐function mutation. Wild‐type optineurin (OPTNWT) suppresses nuclear factor‐kappa B (NF‐κB) activity, but the ALS‐causing mutant OPTN is unable to suppress NF‐κB activity. Therefore, we knocked down OPTN in neuronal cells and examined the resulting NF‐κB activity and phenotype. First, we confirmed the loss of the endogenous OPTN expression after siRNA treatment and found that NF‐κB activity was increased in OPTN‐knockdown cells. Next, we found that OPTN knockdown caused neuronal cell death. Then, overexpression of OPTNWT or OPTNE50K with intact NF‐κB‐suppressive activity, but not overexpression of ALS‐related OPTN mutants, suppressed the neuronal death induced by OPTN knockdown. This neuronal cell death was inhibited by withaferin A, which selectively inhibits NF‐κB activation. Lastly, involvement of the mitochondrial proapoptotic pathway was suggested for neuronal death induced by OPTN knockdown. Taken together, these results indicate that inappropriate NF‐κB activation is the pathogenic mechanism underlying OPTN mutation‐related ALS.

  相似文献   


13.
Cellular senescence is a permanent state of cell cycle arrest that protects the organism from tumorigenesis and regulates tissue integrity upon damage and during tissue remodeling. However, accumulation of senescent cells in tissues during aging contributes to age‐related pathologies. A deeper understanding of the mechanisms regulating the viability of senescent cells is therefore required. Here, we show that the CDK inhibitor p21 (CDKN1A) maintains the viability of DNA damage‐induced senescent cells. Upon p21 knockdown, senescent cells acquired multiple DNA lesions that activated ataxia telangiectasia mutated (ATM) and nuclear factor (NF)‐κB kinase, leading to decreased cell survival. NF‐κB activation induced TNF‐α secretion and JNK activation to mediate death of senescent cells in a caspase‐ and JNK‐dependent manner. Notably, p21 knockout in mice eliminated liver senescent stellate cells and alleviated liver fibrosis and collagen production. These findings define a novel pathway that regulates senescent cell viability and fibrosis.  相似文献   

14.
Human Cdc25 phosphatases play important roles in cell cycle regulation by removing inhibitory phosphates from tyrosine and threonine residues of cyclin-dependent kinases. Three human Cdc25 isoforms, A, B, and C, have been discovered. Cdc25B and Cdc25C play crucial roles at the G(2)/M transition. In the present study, we have investigated the function of human Cdc25A phosphatase. Cell lines that express human Cdc25A in an inducible manner have been generated. Ectopic expression of Cdc25A accelerates the G(1)/S-phase transition, indicating that Cdc25A controls an event(s) that is rate limiting for entry into S phase. Furthermore, we carried out a detailed analysis of the expression and activation of human Cdc25A. Activation of endogenous Cdc25A occurs during late G(1) phase and increases in S and G(2) phases. We further demonstrate that Cdc25A is activated at the same time as cyclin E- and cyclin A-dependent kinases. In vitro, Cdc25A dephosphorylates and activates the cyclin-Cdk complexes that are active during G(1). Overexpression of Cdc25A in the inducible system, however, leads to a premature activation of both cyclin E-Cdk2 and cyclin A-Cdk2 complexes, while no effect of cyclin D-dependent kinases is observed. Furthermore, Cdc25A overexpression induces a tyrosine dephosphorylation of Cdk2. These results suggest that Cdc25A is an important regulator of the G(1)/S-phase transition and that cyclin E- and cyclin A-dependent kinases act as direct targets.  相似文献   

15.
Activation of Cdc2-cyclin B (or M phase-promoting factor (MPF)) at the prophase/metaphase transition proceeds in two steps: dephosphorylation of Cdc2 and phosphorylation of cyclin B. We here investigated the regulation of cyclin B phosphorylation using the starfish oocyte model. Cyclin B phosphorylation is not required for Cdc2 kinase activity; both the prophase complex dephosphorylated on Cdc2 with Cdc25 and the metaphase complex dephosphorylated on cyclin B with protein phosphatase 2A display high kinase activities. An in vitro assay of cyclin B kinase activity closely mimics in vivo phosphorylation as shown by phosphopeptide maps of in vivo and in vitro phosphorylated cyclin B. We demonstrate that Cdc2 itself is the cyclin B kinase; cyclin B phosphorylation requires Cdc2 activity both in vivo (sensitivity to vitamin K3, a Cdc25 inhibitor) and in vitro (copurification with Cdc2-cyclin B, requirement of Cdc2 dephosphorylation, and sensitivity to chemical inhibitors of cyclin-dependent kinases). Furthermore, cyclin B phosphorylation occurs as an intra-M phase-promoting factor reaction as shown by the following: 1) active Cdc2 is unable to phosphorylate cyclin B associated to phosphorylated Cdc2, and 2) cyclin B phosphorylation is insensitive to enzyme/substrate dilution. We conclude that, at the prophase/metaphase transition, cyclin B is mostly phosphorylated by its own associated Cdc2 subunit.  相似文献   

16.
Cells are constantly threatened by multiple sources of genotoxic stress that cause DNA damage. To maintain genome integrity, cells have developed a coordinated signalling network called DNA damage response (DDR). While multiple kinases have been thoroughly studied during DDR activation, the role of protein dephosphorylation in the damage response remains elusive. Here, we show that the phosphatase Cdc14 is essential to fulfil recombinational DNA repair in budding yeast. After DNA double‐strand break (DSB) generation, Cdc14 is transiently released from the nucleolus and activated. In this state, Cdc14 targets the spindle pole body (SPB) component Spc110 to counterbalance its phosphorylation by cyclin‐dependent kinase (Cdk). Alterations in the Cdk/Cdc14‐dependent phosphorylation status of Spc110, or its inactivation during the induction of a DNA lesion, generate abnormal oscillatory SPB movements that disrupt DSB‐SPB interactions. Remarkably, these defects impair DNA repair by homologous recombination indicating that SPB integrity is essential during the repair process. Together, these results show that Cdc14 promotes spindle stability and DSB‐SPB tethering during DNA repair, and imply that metaphase spindle maintenance is a critical feature of the repair process.  相似文献   

17.
18.
Members of the eukaryotic Cdc25 phosphatase family are key targets of the Chk1 and Chk2 checkpoint kinases, which inactivate Cdc25 to halt cell cycle progression when DNA is damaged or incompletely replicated. Now, new kinases that phosphorylate and inactivate Cdc25 are being discovered, including MAPKAP kinase-2, a component of the p38 stress-activated MAP kinase pathway. The roles of other kinases, such as cyclin-dependent kinase, Polo and Aurora A kinase, in controlling the localization or the activation of Cdc25, are controversial. Here, we discuss new data that suggests that different Cdc25 isoforms and regulators of Cdc25 are differentially required for normal cell cycle progression and recovery from checkpoint arrest.  相似文献   

19.
20.
Greatwall (GW) is a new kinase that has an important function in the activation and the maintenance of cyclin B–Cdc2 activity. Although the mechanism by which it induces this effect is unknown, it has been suggested that GW could maintain cyclin B–Cdc2 activity by regulating its activation loop. Using Xenopus egg extracts, we show that GW depletion promotes mitotic exit, even in the presence of a high cyclin B–Cdc2 activity by inducing dephosphorylation of mitotic substrates. These results indicate that GW does not maintain the mitotic state by regulating the cyclin B–Cdc2 activation loop but by regulating a phosphatase. This phosphatase is PP2A; we show that (1) PP2A binds GW, (2) the inhibition or the specific depletion of this phosphatase from mitotic extracts rescues the phenotype induced by GW inactivation and (3) the PP2A‐dependent dephosphorylation of cyclin B–Cdc2 substrates is increased in GW‐depleted Xenopus egg extracts. These results suggest that mitotic entry and maintenance is not only mediated by the activation of cyclin B–Cdc2 but also by the regulation of PP2A by GW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号