首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim To investigate alien plant species invasion levels in different habitats and alien species traits by comparing the naturalized flora in different areas of the same biogeographical region. Location Spain, Italy, Greece and Cyprus. Methods Comparison of floristic composition, species traits and recipient habitats of naturalized alien neophytes across an east–west gradient comprising four countries in the European Mediterranean basin. Results A total of 782 naturalized neophytes were recorded; only 30 species were present in all four countries. Although floristic similarity is low, the four alien floras share the same patterns of growth form (mostly herbs), life cycle (mostly perennials) and life form (mostly therophytes, hemicryptophytes and phanerophytes). The majority of the recipient habitats were artificial. Wetlands were the natural habitats, with the highest numbers of naturalized species. Floristic similarity analyses revealed: (1) the highest floristic similarity between Italy and Spain, both of which were more similar to Greece than to Cyprus; (2) two groups of floristic similarity between habitat categories in each country (Greece–Cyprus and Italy–Spain); (3) a higher degree of homogenization in the plant assemblages in different habitats in Greece and Cyprus and a lower degree of homogenization in those in Italy and Spain; and (4) a higher degree of homogenization in artificial and natural fresh‐water habitats than in the other natural habitats. Main conclusions The floristic similarity of naturalized neophytes between the four countries is low, although the overall analysis indicates that the western group (Italy–Spain) is separated from the eastern group (Greece–Cyprus). Similar patterns emerged regarding the life‐history traits and recipient habitats. The artificial habitats and the natural wet habitats are those that are invaded most and display the greatest homogenization in all four countries. Coastal habitats display a lower degree of homogenization but a high frequency of aliens. Dry shrubs and rocky habitats display a lower degree of homogenization and a low frequency of aliens.  相似文献   

2.
The objective of this work was to compare and contrast the patterns of alien plant invasions in the world’s five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period.  相似文献   

3.
Aim To assess how habitat affinities in the native distribution range influence the invasion success of 282 central European neophytes (alien plants introduced after ad 1500). Location Czech Republic. Methods Classification trees were used to determine which native habitats donate the most alien species, the correspondence between habitats occupied by species in their native and invaded distribution ranges, and invasion success of species originating from different habitats. Results The species most likely to naturalize in Central Europe are those associated with thermophile woodland fringes in their native range (81%), cultivated areas of gardens and parks (75%) and broad‐leaved deciduous woodlands (72%). The largest proportions of invasive species recruit from those that occur on riverine terraces and eroded slopes, or grow in both deciduous woodland and riverine scrub. When the relative role of habitats in the native range is assessed as a determinant of the probability that a species will become invasive in concert with other factors (the species’ residence time, life history, region of origin), the direct effect of habitat is negligible. However, the effect of native habitats on patterns of invasions observed in central Europe is manifested by large differences in the numbers of species they supply to the invaded region. More than 50 neophytes were recruited from each of the following habitats: dry grasslands, ruderal habitats, deciduous woodland, inland cliffs, rock pavements and outcrops, and tall‐herb fringes and meadows. Main conclusions Casual species recruit from a wider range of habitats in their native range than they occupy in the invaded range; naturalized but not invasive species inhabit a comparable spectrum of habitats in both ranges, and successful invaders occupy a wider range of habitats in the invaded than in the native range. This supports the idea that the invasive phase of the process is associated with changes in biological features that allow for extension of the spectrum of habitats invaded.  相似文献   

4.
不受欢迎的生物多样性:香港的外来植物物种   总被引:46,自引:2,他引:44  
香港早在19世纪中叶开始就有外来植物入侵的记录,迄今为止,已发现多达238种已归化的外来或怀疑为外来的植物,其中又以薇甘菊(Mikania micrantha)、五爪金龙(Ipomoea cairica)、假臭草(Eupatorium catarium)、大黍(Panicum maximum)等最常见,外来植物最常见于受人为干扰的生境,例如荒废农田及路旁等,而较少在天然林地生境及贫瘠的灌草丛中发现,外来植物的对本地生态系统的影响主要局限于低地生境,它们常形成单优种群,减少了生境及贫瘠的灌草丛中发现,外来植物对本地生态系统的影响主要局限于低地生境,它们常形成单优种群,减少少了生境及动植物的多样性,外来动物对香港原生植物影响最大的是于20世纪70年代入侵的松树线虫(Bur-saphelenchus xylophilus)。外来的脊椎动物也有可能对香港的植物被演替产生影响,目前香港的外来植物当中,有些在大陆较少分布或没有记录,作为华南最大的港口,香港对外来物种的引入扮演着重要的角色,因此制定控制外来种在香港及华南地区的引入及传播的政策及措施非常重要。  相似文献   

5.
The biogeography of naturalization in alien plants   总被引:9,自引:0,他引:9  
Aim  This paper reviews the main geographical determinants of naturalization in plants.
Location  Global.
Methods  Comparative studies of large data sets of alien floras are the main source of information on global patterns of naturalization.
Results  Temperate mainland regions are more invaded than tropical mainland regions but there seems to be no difference in invasibility of temperate and tropical islands. Islands are more invaded than the mainland. The number of naturalized species in temperate regions decreases with latitude and their geographical ranges increase with latitude. The number of naturalized species on islands increases with temperature. Naturalized species contribute to floristic homogenization, but the phenomenon is scale-dependent.
Main conclusions  Some robust patterns are evident from currently available data, but further research is needed on several aspects to advance our understanding of the biogeography of naturalization of alien plants. For example, measures of propagule pressure are needed to determine the invasibility of communities/ecosystems/regions. The patterns discussed in this paper are derived largely from numbers and proportions of naturalized species, and little is known about the proportion of introduced species that become naturalized. Further insights on naturalization rates, i.e. the proportion of aliens that successfully naturalize within regions, and on geographical and other determinants of its variation would provide us with better understanding of the invasion process. Comparative studies, and resulting generalizations, are almost exclusively based on numbers of species, but alien species differ in their impact on native biodiversity and ecosystem processes.  相似文献   

6.
The aim of this study was to assess the invasion risk of freshwater habitats and determine the environmental variables that are most favorable for the establishment of alien amphipods, isopods, gastropods, and bivalves. A total of 981 sites located in streams and rivers in Germany. Therefore we analyzed presence–absence data of alien and indigenous amphipods, isopods, gastropods, and bivalves from 981 sites located in small to large rivers in Germany with regard to eight environmental variables: chloride, ammonium, nitrate, oxygen, orthophosphate, distance to the next navigable waterway, and maximum and minimum temperature. Degraded sites close to navigable waters were exposed to an increased invasion risk by all major groups of alien species. Moreover, invaded sites by all four groups of alien species were similar, whereas the sites where indigenous members of the four groups occurred were more variable. Increased temperature and chloride concentration as well as decreased oxygen concentration were identified as major factors for the invasibility of a site. Species‐specific analyses showed that chloride was among the three most predictive environmental variables determining species assemblage in all four taxonomic groups. Also distance to the next navigable waterways was similarly important. Additionally, the minimum temperature was among the most important variables for amphipods, isopods, and bivalves. The bias in the occurrence patterns of alien species toward similarly degraded habitats suggests that the members of all four major groups of freshwater alien species are a non‐random, more tolerant set of species. Their common tolerance to salinity, high temperature, and oxygen depletion may reflect that most alien species were spread in ballast water tanks, where strong selective pressures, particularly temperature fluctuations, oxygen depletion, and increased salinity may create a bottleneck for successful invasion. Knowledge on the major factors that influence the invasion risk of a habitat is needed to develop strategies to limit the spread of invasive species.  相似文献   

7.
Aim Urbanization is a major driver of global land‐use change, substantially modifying patterns of biodiversity. Managing these impacts has become a conservation priority. The creation and maintenance of greenways, such as river corridors, is frequently promoted as a strategy for mitigating habitat fragmentation in urban areas by bringing semi‐natural habitat cover into city centres. However, there is little evidence to support this assertion. Here, we examine whether riparian zones maintain semi‐natural habitat cover in urban areas and how species richness varies along such zones. Location Sheffield, Northern England. Methods Multiple taxonomic groups (birds, butterflies, plants) were surveyed at 105 sites spanning seven riparian corridors that transect the study system. For all groups, we model the relationships between species richness and environmental variables pertinent to an urban system. To test whether riparian zones can act to maintain semi‐natural habitats within a city, we modelled the proportion of semi‐natural land cover within 250 m grid squares that do, and do not, contain a river. Results Species richness varied markedly in relation to distance from the urban core. Trends differed both between taxonomic groups and between rivers, reflecting the complex patterns of environmental variation associated with cities. This suggests that biodiversity surveys that focus on a single group or transect cannot reliably be used as surrogates even within the same city. Nonetheless, there were common environmental predictors of species richness. Plant, avian and butterfly richness all responded positively to Habitat Diversity and the latter two declined with increases in sealed surface. Main conclusions Multiple transects and taxonomic groups are required to describe species richness responses to urbanization as no single pattern is evident. Although riparian zones are an important component of the mosaic of urban habitats, we find that river corridors do not disproportionately support tree and Natural Surface Cover when compared to non‐riverine urban areas.  相似文献   

8.
Abstract La Réunion Island has the largest area of intact vegetation of the islands in the Mascarene archipelago. Biological invasions are the primary threat to biodiversity in the intact habitats of the island (those not already transformed by agriculture and urbanization). Our study aimed to identify areas to prioritize in managing invasive alien plants for biodiversity conservation. We used extensive surveys of 238 distinct untransformed areas on La Réunion to define the current distribution patterns of all invasive species. Using expert knowledge, we compiled maps of the current distribution of the 46 most widespread/important invasive plants at the habitat scale (identified according to vegetation structure). Data from 440 botanical relevés for the 20 most threatening invasive alien plant species across the island and climatic envelope models were used to derive climatic suitability surfaces; these were used to map potential distributions for these species. More than 10 species invade 16.7% of the remaining habitat. Five habitat types are invaded by 25 or more species, and eight have fewer than 10 invasive alien plant species. Cluster analysis based on presence/absence of species in the 18 habitat types produced eight groups of species that invade particular habitats. Potential distribution models show that some species have invaded large parts of their potential range (e.g. Fuchsia magellanica, Furcraea foetida, Hiptage benghalensis), whereas others have the potential to increase their range substantially (e.g. Clidemia hirta, Strobilanthes hamiltonianus, Ulex europaeus). Management implications are identified for both groups. Three broad groups of habitats were identified: (i) intact habitats with a low level of invasion (e.g. subalpine shrubland); (ii) moderately invaded habitats with varying levels of intactness (ranging from windward submountain rainforest to the Acacia heterophylla forest); and (iii) habitats with little remaining intact area and high levels of invasion (e.g. lowland rainforest). Different management interventions are appropriate for these three groups.  相似文献   

9.
为了解华南地区外来植物现状,通过野外调查和查阅文献等,确定华南地区有外来入侵和归化植物45科141属223种,以菊科(Asteraceae,38种)、豆科(Fabaceae,36种)、禾本科(Poaceae,19种)植物为主,其中草本植物和原产美洲的植物占优势,分别有204种(占总数的91.5%)和163种(占73.1%)。广东外来入侵植物有159种,归化植物23种;广西有入侵植物135种,归化植物16种;海南有入侵植物111种,归化种15种;香港有入侵植物105种,归化植物9种;澳门有入侵植物89种,归化种4种;华南5省区共有的外来入侵和归化植物为57种(55种为入侵植物,2种为归化植物)。广东是外来植物种类最多的地区,与其他4省区共有的外来入侵和归化植物种类也最多,说明广东同时是外来植物输入和输出大省。由于气候和生态生境的相似性,各省区都面临着其他植物从周边地区入侵的风险,因此在治理入侵植物时,应建立联合防控机制对外来入侵植物的联合监测和防控,以提升外来入侵植物的治理成效和降低其对人类健康和生态安全的威胁。  相似文献   

10.
Naturalization of alien plants in China   总被引:3,自引:0,他引:3  
Naturalization (the establishment of a self-sustaining population for at least a decade) is a fundamental precondition for plant invasion and so compiling a complete inventory of naturalized alien species is necessary for predicting and hence preventing such invasion. However, nationwide information on naturalized plants in China is still lacking. We compiled a nationwide list of the naturalized plant species of China, based on various literature reports. The list comprised a total of 861 naturalized plant species belonging to 110 families and 465 genera. The three most dominant families were Compositae, Poaceae, and Leguminosae, accounting for 16, 13 and 12% of naturalized plants, respectively. Among genera, Euphorbia and Solanum had the most naturalized species, followed by Ipomoea, Amaranthus, Oenothera, and Trifolium. Over half of all aliens were of American origin (52%), followed by those with European (14%) and Asian (13%) origins. Annuals and perennial herbs were prevalent among naturalized species; comparison to other studies suggests however that the invasive potential is higher among plants with longer life cycles than those of annuals. The taxonomic pattern of plant naturalization in China is similar to patterns worldwide. However, the low proportion of naturalized plants within the Chinese flora overall suggests that the potential for plant invasions in China may be high. Therefore, greater attention should be focused on naturalization of alien plants in China, especially concerning species of dominant families or genera, and those with a perennial life cycle.  相似文献   

11.
Conservation ecology is a new paradigm of ecology that aims at scientific contributions to maintaining earth's biodiversity and is committed to ecosystem management indispensable to intergenerational long-term sustainability. Population ecology plays a central role in conservation ecology. Persistence of the metapopulation rather than that of each local population should be pursued in species conservation management. Biological interactions essential to reproduction and soil seed bank components of the population should be investigated and applied to planning for the conservation of a plant population. Gravelly floodplains and moist tall grasslands are among typical riparian habitats containing many threatened plants in Japan. These riparian habitats are now subjected not only to heavy fragmentation but also to intensive invasion of highly competitive alien (nonnative) plants. Extreme habitat isolation may result in reproductive failure or fertility selection in a plant population without pollinators, as exemplified by a nature reserve population of Primula sieboldii. Biological invasions, which are facilitated by extensive changes in the river environment including decreased seasonal flooding, abandonment of traditional vegetation management, eutrophication, and extensive clearing of the land for recreational use, threaten endemic riparian species. To preserve safe sites and growing conditions for threatened plants such as Aster kantoensis, active management to suppress the dominance of alien invader plants is necessary. Population management and habitat restoration should be based on sound information on the population ecology of both threatened and alien invader plants, designed as an ecological experiment to clarify effective ways for management. Received: September 18, 1998 / Revised: October 22, 2001 / Accepted: October 23, 2001  相似文献   

12.
Despite increasing frequency of invasions by alien plant species with widespread ecological and economic consequences, it remains unclear how belowground compartments of ecosystems are impacted. In order to synthetize current knowledge and provide future directions for research we performed a meta‐analysis assessing the impact of invasive alien plant species on soil fauna abundance. Compared to previous synthesis on this topic, we included together in our model the trophic group of each soil faunal taxa (from herbivores to predators) and habitat structure, namely open and closed habitats (i.e. grass and shrub dominated areas versus forested areas). In doing so, we highlighted that both moderators strongly interact to determine the response of soil fauna to the presence of invasive alien plants. Soil fauna abundance increase in the presence of invasive species only in closed habitats (+18.2%). This pattern of habitat‐dependent response (positive effect in closed habitats) was only found for primary consumers (i.e. herbivores +29.1% and detritivores +66.7%) within both detritus‐based and live root‐based trophic pathways. Abundances of predators and microbivores did not respond to the presence of IAS irrespective of habitat structure. For several groups, the habitat structure (open or closed) significantly drove their responses to the presence of invasive alien species. In addition, we carefully considered potential sources of bias (e.g. geographic, taxonomic and functional) within the collected data in an attempt to highlight gaps in available knowledge on the subject. Our findings support the conclusions of previous studies on the subject by demonstrating 1) that soil fauna abundance is impacted by biological invasions, 2) that initial habitat structure has a strong influence on the outcome and 3) that responses within the soil fauna differ between trophic levels with a stronger response of primary consumers.  相似文献   

13.
Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60‐year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the ‘imperialist dogma,’ stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub)tropical regions, yet not by enough to cancel out the trade‐related increase.  相似文献   

14.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

15.
Aim The increasing number and availability of online databases of alien species beg a question of their comparability given most do not adopt standard criteria in the definition of species status or taxonomic treatment and vary in their comprehensiveness. In this study, we compare the consistency of two major European databases for the regions they have in common. We assess whether they use consistent terminology to classify species status, provide similar taxonomic classification and coverage, deliver comparable estimates of alien richness per country and identify comparable correlates of alien richness. Location Northern Europe. Methods Data on the total number of alien species as well as the number of established alien species were extracted from the online databases DAISIE and NOBANIS for 13 European countries and classified into comparable taxonomic groups. Analyses across countries examined trends in alien species richness, correlations among taxonomic groups and the explanatory power of population density, country area and per capita GDP on alien species richness. Results Alien species richness, intertaxon correlations and the significance of individual drivers of invasion were all strongly database dependent. Differences were more marked for total numbers of aliens than established aliens. Over all taxonomic groups, DAISIE had lower species richness and fewer significant intertaxon correlations but presented a greater number of significant explanatory models of alien species richness. Trends in species richness were not generally correlated between the two databases with human population density being a more important driver in DAISIE while country area had greater explanatory power in NOBANIS. Main conclusions Considerable caution should be applied when collating data from different databases because often their underlying structure and content may differ markedly. For Europe, the analysis indicates that having two contrasting databases is not an ideal basis for implementing invasive species policy and moves should be made soon to establish a central pan‐European database.  相似文献   

16.
The Cape Floristic Region of South Africa is a global biodiversity hotspot threatened by invasive alien plants (IAPs). We assessed the effect of plant invasions, and their subsequent clearing, on riparian arthropod diversity. Foliage-active arthropod communities were collected from two native and one invasive alien tree species. Alpha- and beta-diversity of their associated arthropod communities were compared between near pristine, Acacia-invaded and restored sites. Arthropod alpha-diversity at near pristine sites was higher than at restored sites, and was lowest at invaded sites. This was true for most arthropod taxonomic groups associated with all native tree species and suggests a general trend towards recovery in arthropod alpha-diversity after IAP removal. Overall, arthropod species turnover among sites was significantly influenced by plant invasions with communities at near pristine sites having higher turnover than those at restored and invaded sites. This pattern was not evident at the level of individual tree species. Although arthropod community composition was significantly influenced by plant invasions, only a few significant differences in arthropod community composition could be detected between restored and near pristine sites for all tree species and arthropod taxonomic groups. Assemblage composition on each tree species generally differed between sites with similar degrees of plant invasion indicating a strong turnover of arthropod communities across the landscape. Results further suggest that both arthropod alpha- and beta-diversity can recover after IAP removal, given sufficient time, but catchment signatures must be acknowledged when monitoring restoration recovery.  相似文献   

17.
We evaluated the temporal and spatial patterns of abundance and the amount of damage caused by gall‐inducing insects (GII) in deciduous and riparian habitats in a seasonal tropical dry forest in Mexico. Plants occurring in these habitats differ in their phenology and moisture availability. Deciduous habitats are seasonal and xeric, while riparian habitats are aseasonal and mesic. We found 37 GII species and each one was associated with a specific plant species. In total, 19 species (51.3%) were present in deciduous habitats, 13 species (35.2%) in riparian habitats, and only 5 species (13.5%) occurred in both. Abundance and leaf damage by GII were greater in deciduous than in riparian habitats during the wet season. For each GII species that occurred in both habitats, host plant species supported greater abundance and leaf damage by GII in deciduous habitats during the wet season. These results indicate a greater association of GII species with host plants in deciduous than in riparian habitats during the wet season. In riparian habitats, 11 plant species (61.1%) had greater density of GII in the dry than in the wet season. Similarly, leaf damage by GII was significantly greater in the dry than in the wet season in riparian habitats for 12 plant species (66.7%). Dry forest plants of riparian habitats presented two peaks of leaf‐flushing: GII colonized leaves produced in the first peak at the beginning of the wet season, and accumulated or recolonized leaves in the second peak at the beginning of the dry season. The levels of leaf damage by GII detected in this study in the rainy season were considerably higher than those obtained for folivorous insects in other neotropical forests, suggesting that this GII guild might have an important impact on their host plant species in this tropical community.  相似文献   

18.
Questions: 1. Which habitats have the highest degree of invasion? 2. Do native species-rich communities have also a high degree of invasion? 3. Do the patterns of association between native and alien species richness vary between habitats. Location: Catalonia region (NE Spain). Methods: We conducted a large regional analysis of 15655 phytosociological relevés to detect differences in the degree of invasion between European Nature Information System (EUNIS) habitats representative of temperate and Mediterranean European areas. Results: Alien species were present in less than 17 % of the relevés and represented less than 2% of the total number of species per habitat. The EUNIS habitats with the highest alien species richness were arable land and gardens followed by anthropogenic forb-rich habitats, riverine and lakeshore scrubs, southern riparian galleries and thickets and trampled areas. In contrast, the following habitats had never any alien species: surface running waters, raised and blanket bogs, valley mires, poor fens and transition mires, base-rich fens, alpine and sub-alpine grasslands, sub-alpine moist or wet tall-herb and fern habitats, alpine and sub-alpine scrub habitats and spiny Mediterranean heaths. There was a unimodal relationship between the mean native and mean alien species richness per EUNIS habitat with a high number of aliens in habitats with intermediate number of native species and a low number of aliens at both extremes of the native species gradient. Within EUNIS habitats, the relationship was positive, negative or non-significant depending on the habitat type without any clear pattern related to the number of native species. Alien species richness was not related to plot size, neither between habitats nor within habitats. Conclusions: The analysis emphasised that the habitats with a higher degree of invasion were the most disturbed ones and that in general habitats rich in native species did not harbour less invaders than habitats poor in native species.  相似文献   

19.
Question: Invasive alien plants can affect biomass production and rates of biogeochemical cycling. Do the direction and intensity of such effects depend upon the functional traits of native and alien species and upon the properties of the invaded habitat, with the same alien species having differing impacts in different habitats? Location: Lowlands of Switzerland. Methods: Fourteen grassland and wetland sites invaded by Solidago gigantea and widely differing in biomass production and soil P availability were surveyed. To determine whether the impact of the species was related to site fertility, we compared the invaded and native vegetation in terms of biomass, species composition, plant traits and soil properties. Results: S. gigantea generally increased the above‐ground biomass production of the vegetation and soil C content, while reducing nutrient concentrations in biomass and N availability in the soil. However, it had no significant effect on plant species richness, soil respiration, soil pH and P availability. Leaves of S. gigantea had a greater C content than those of native species; other leaf traits and root phosphatase activity did not differ significantly. Conclusions: Our results suggest that a conservative nutrient‐use strategy allows S. gigantea to invade a broad range of habitats. The observed effects of invasion did not vary according to biomass production of the invaded sites, but some effects did depend on soil P availability, being more pronounced at more P‐rich sites. Thus, the full range of invaded habitats should be considered in studying the potential impact of plant invasions on ecosystem processes.  相似文献   

20.
The survival and success of alien plant species is determined by species traits (i.e., invasiveness) and the characteristics of the habitats in the region of introduction (i.e., invasibility). However, little is known about species traits as related to habitat characteristics. We assessed the characteristics of successful invaders and the interaction of environmental factors and life-history traits for alien plant species. The vascular plants were recorded from 52 agricultural landscapes in Finland. We compared the traits of native and alien plant species with Fisher’s exact test and used a three table ordination analysis, RLQ analysis, to relate species traits to environmental conditions. Species were clustered according to their position on the RLQ axes, and the clusters were tested for phylogenetic independence. The successful alien plant species were associated with life form and preferences for moisture and nitrogen, but the trait composition varied according to the habitat type. Two RLQ axes explained 80.5% of the variation, and the species traits were significantly associated with environmental variables. The clustering showed that the occurrence of alien plant species in agricultural habitats was driven by invasion history, traits related to dispersal (dispersal type, seed mass) and habitat preferences, as well as environmental features, such as geographical location, temperature and the quality and disturbance regime of the habitats. All clusters were phylogenetically non-independent. Thus, the clusters of alien species comprised species of diverse taxonomic affinities, although, they shared the traits explaining their occurrence in particular habitats. This information is useful for understanding the link between species traits and the environmental conditions of the habitats, and complexity of the invasion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号