首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TccC3 and TccC5 from Photorhabdus luminescens are ADP‐ribosyltransferases, which modify actin and Rho GTPases, respectively, thereby inducing polymerization and clustering of actin. The bacterial proteins are components of the Photorhabdus toxin complexes, consisting of the binding and translocation component TcdA1, a proposed linker component TcdB2 and the enzymatic component TccC3/5. While the action of the toxins on target proteins is clearly defined, uptake and translocation of the toxins into the cytosol of target cells are not well understood. Here we show by using pharmacological inhibitors that heat shock protein 90 (Hsp90) and peptidyl prolyl cis/trans isomerases (PPIases) including cyclophilins and FK506‐binding proteins (FKBPs) facilitate the uptake of the ADP‐ribosylating toxins into the host cell cytosol. Inhibition of Hsp90 and/or PPIases resulted in decreased intoxication of target cells by Photorhabdus toxin complexes determined by cell rounding and reduction of transepithelial electrical resistance of cell monolayers. ADP‐ribosyltransferase activity of toxins and toxin‐induced pore formation were notimpaired by the inhibitors of Hsp90 and PPIases. The Photorhabdus toxins interacted with Hsp90, FKBP51, Cyp40 and CypA, suggesting a role of these host cell factors in translocation and/or refolding of the ADP‐ribosyltransferases.  相似文献   

2.
3.
Establishment of infection by facultative intracellular pathogen Mycobacterium tuberculosis (Mtb) requires adherence to and internalisation by macrophages. However, the effector molecules exploited by Mtb for entry into macrophages remain to be fully understood. The mammalian cell entry (Mce) proteins play an essential role in facilitating the internalisation of mycobacteria into mammalian cells. Here, we characterized Mtb Mce3C as a new mycobacterial surface protein that could promote mycobacterial adhesion to and invasion of macrophages in an RGD motif‐dependent manner. We then further demonstrated that β2 integrin was required for Mce3C‐mediated cell entry. In addition, we found that binding of Mce3C recruited β2 integrin‐dependent signalling adaptors and induced local actin rearrangement at the site of mycobacterial invasion. By using specific antibodies and pharmacological inhibitors, we further demonstrated the involvement of Src‐family tyrosine kinases, spleen tyrosine kinase, Vav, Rho, and Rho‐associated kinase in Mce3C‐mediated mycobacterial invasion. Our results reveal a novel mechanism by which Mtb Mce3C exploits integrin‐mediated signalling cascade for Mce, providing potential targets for the development of therapies against Mtb infection.  相似文献   

4.
5.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are ubiquitous environmental carcinogenic contaminants exerting deleterious effects toward cells acting in the immune defense such as monocytic cells. To investigate the cellular basis involved, we have examined the consequences of PAH exposure on macrophagic differentiation of human blood monocytes. Treatment by BP markedly inhibited the formation of adherent macrophagic cells deriving from monocytes upon the action of either GM-CSF or M-CSF. Moreover, it reduced expression of macrophagic phenotypic markers such as CD71 and CD64 in GM-CSF-treated monocytic cells, without altering cell viability or inducing an apoptotic process. Exposure to BP also strongly altered functional properties characterizing macrophagic cells such as endocytosis, phagocytosis, LPS-triggered production of TNF-alpha and stimulation of allogeneic lymphocyte proliferation. Moreover, formation of adherent macrophagic cells was decreased in response to PAHs distinct from BP such as dimethylbenz(a)anthracene and 3-methylcholanthrene, which interact, like BP, with the arylhydrocarbon receptor (AhR) known to mediate many PAH effects. In contrast, benzo(e)pyrene, a PAH not activating AhR, had no effect. In addition, AhR was demonstrated to be present and functional in cultured monocytic cells, and the use of its antagonist alpha-naphtoflavone counteracted inhibitory effects of BP toward macrophagic differentiation. Overall, these data demonstrate that exposure to PAHs inhibits functional in vitro differentiation of blood monocytes into macrophages, likely through an AhR-dependent mechanism. Such an effect may contribute to the immunotoxicity of these environmental carcinogens owing to the crucial role played by macrophages in the immune defense.  相似文献   

6.
Class III receptor tyrosine kinases control the development of hematopoietic stem cells. Constitutive activation of FLT3 by internal tandem duplications (ITD) in the juxtamembrane domain has been causally linked to acute myeloid leukaemia. Oncogenic FLT3 ITD is partially retained in compartments of the biosynthetic route and aberrantly activates STAT5, thereby promoting cellular transformation. The pool of FLT3 ITD molecules in the plasma membrane efficiently activates RAS and AKT, which is likewise essential for cell transformation. Little is known about features and mechanisms of FLT3 ligand (FL)‐dependent internalization of surface‐bound FLT3 or FLT3 ITD. We have addressed this issue by internalization experiments using human RS4‐11 and MV4‐11 cells with endogenous wild‐type FLT3 or FLT3 ITD expression, respectively, and surface biotinylation. Further, FLT3 wild‐type, or FLT3 ITD‐GFP hybrid proteins were stably expressed and characterized in 32D cells, and internalization and stability were assessed by flow cytometry, imaging flow cytometry, and immunoblotting. FL‐stimulated surface‐exposed FLT3 WT or FLT3 ITD protein showed similar endocytosis and degradation characteristics. Kinase inactivation by mutation or FLT3 inhibitor treatment strongly promoted FLT3 ITD surface localization, and attenuated but did not abrogate FL‐induced internalization. Experiments with the dynamin inhibitor dynasore suggest that active FLT3 as well as FLT3 ITD is largely endocytosed via clathrin‐dependent endocytosis. Internalization of kinase‐inactivated molecules occurred through a different yet unidentified mechanism. Our data demonstrate that FLT3 WT and constitutively active FLT3 ITD receptor follow, despite very different biogenesis kinetics, similar internalization and degradation routes.  相似文献   

7.
8.
This paper shows that in vitro infection of human monocytes by Mycobacterium tuberculosis affected monocyte to macrophage differentiation. Despite the low bacterial load used, M. tuberculosis-infected monocytes had fewer granules, displayed a reduced number of cytoplasmic projections and decreased HLA class II, CD68, CD86 and CD36 expression compared to cells differentiated in the absence of mycobacteria. Infected cells produced less IL-12p70, TNF-α, IL-10, IL-6 and high IL-1β in response to lipopolysaccharide and purified protein M. tuberculosis-derived. Reduced T-cell proliferative response and IFN-γ secretion in response to phytohemagglutinin and culture filtrate proteins from M. tuberculosis was also observed in infected cells when compared to non-infected ones. The ability of monocytes differentiated in the presence of M. tuberculosis to control mycobacterial growth in response to IFN-γ stimulation was attenuated, as determined by bacterial plate count; however, they had a similar ability to uptake fluorescent M. tuberculosis and latex beads compared to non-infected cells. Recombinant IL-1β partially altered monocyte differentiation into macrophages; however, treating M. tuberculosis-infected monocytes with IL-1RA did not reverse the effects of infection during differentiation. The results indicated that M. tuberculosis infection altered monocyte differentiation into macrophages and affected their ability to respond to innate stimuli and activate T-cells.  相似文献   

9.
Tumor associated macrophages (TAMs) promote angiogenesis, tumor invasion and metastasis, and suppression of anti-tumor immunity. These myeloid cells originate from monocytes, which differentiate into TAMs upon exposure to the local tumor microenvironment. We previously reported that Kaposi's sarcoma-associated herpes virus (KSHV) infection of endothelial cells induces the cytokine angiopoietin-2 (Ang-2) to promote migration of monocytes into tumors. Here we report that KSHV infection of endothelial cells induces additional cytokines including interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-13 (IL-13) that drive monocytes to differentiate and polarize into TAMs. The KSHV-induced TAMs not only express TAM-specific markers such as CD-163 and legumain (LGMN) but also display a gene expression profile with characteristic features of viral infection. More importantly, KSHV-induced TAMs enhance tumor growth in nude mice. These results are consistent with the strong presence of TAMs in Kaposi's sarcoma (KS) tumors. Therefore, KSHV infection of endothelial cells generates a local microenvironment that not only promotes the recruitment of monocytes but also induces their differentiation and polarization into TAMs. These findings reveal a new mechanism of KSHV contribution to KS tumor development.  相似文献   

10.
Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN- dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease.  相似文献   

11.
A range of clostridial species produce phospholipases C. The zinc metallo phospholipases C have related sequences but different properties. All of these enzymes may be arranged, like alpha-toxin as two-domain proteins. Differences in enzymatic, haemolytic and toxic properties may be explained by differences in amino acids at key positions.  相似文献   

12.
13.
The cytochemistry of monocytes and macrophages   总被引:7,自引:0,他引:7  
  相似文献   

14.
GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G‐proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf‐guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA‐mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins.  相似文献   

15.
Human galectin-3 is a novel chemoattractant for monocytes and macrophages   总被引:24,自引:0,他引:24  
Galectin-3 is a beta-galactoside-binding protein implicated in diverse biological processes. We found that galectin-3 induced human monocyte migration in vitro in a dose-dependent manner, and it was chemotactic at high concentrations (1.0 microM) but chemokinetic at low concentrations (10-100 nM). Galectin-3-induced monocyte migration was inhibited by its specific mAb and was blocked by lactose and a C-terminal domain fragment of the protein, indicating that both the N-terminal and C-terminal domains of galectin-3 are involved in this activity. Pertussis toxin (PTX) almost completely blocked monocyte migration induced by high concentrations of galectin-3. Galectin-3 caused a Ca2+ influx in monocytes at high, but not low, concentrations, and both lactose and PTX inhibited this response. There was no cross-desensitization between galectin-3 and any of the monocyte-reactive chemokines examined, including monocyte chemotactic protein-1, macrophage inflammatory protein-1alpha, and stromal cell-derived factor-1alpha. Cultured human macrophages and alveolar macrophages also migrated toward galectin-3, but not monocyte chemotactic protein-1. Finally, galectin-3 was found to cause monocyte accumulation in vivo in mouse air pouches. These results indicate that galectin-3 is a novel chemoattractant for monocytes and macrophages and suggest that the effect is mediated at least in part through a PTX-sensitive (G protein-coupled) pathway.  相似文献   

16.
17.
Intoxication of eukaryotic cells by Photorhabdus luminescens toxin TccC3 induces cell rounding and detachment from the substratum within a few hours and compromises a number of cell functions like phagocytosis. Here, we used morphological and biochemical procedures to analyse the mechanism of TccC3 intoxication. Life imaging of TccC3‐intoxicated HeLa cells transfected with AcGFP‐actin shows condensation of F‐actin into large aggregates. Life cell total internal reflection fluorescence (TIRF) microscopy of identically treated HeLa cells confirmed the formation of actin aggregates but also disassembly of F‐actin stress fibres. Recombinant TccC3 toxin ADP‐ribosylates purified skeletal and non‐muscle actin at threonine148 leading to a strong propensity to polymerize and F‐actin bundle formation as shown by TIRF and electron microscopy. Native gel electrophoresis shows strongly reduced binding of Thr148‐ADP‐ribosylated actin to the severing proteins gelsolin and its fragments G1 and G1–3, and to ADF/cofilin. Complexation of actin with these proteins inhibits its ADP‐ribosylation. TIRF microscopy demonstrates rapid polymerization of Thr148‐ADP‐ribosylated actin to curled F‐actin bundles even in the presence of thymosin β4, gelsolin or G1–3. Thr148‐ADP‐ribosylated F‐actin cannot be depolymerized by gelsolin or G1–3 as verified by TIRF, co‐sedimentation and electron microscopy and shows reduced treadmilling as indicated by a lack of stimulation of its ATPase activity after addition of cofilin‐1.  相似文献   

18.
The C3 toxin produced by Clostridium botulinum (C3bot) catalyzes the mono-ADP-ribosylation of the small GTPases Rho A, B and C, resulting in their inactivation. Recently, a specific endocytotic uptake mechanism of C3bot was identified in macrophages and myeloid leukemia cells. Here, we present a novel delivery system based upon a mutant C3bot devoid of ADP-ribosylation activity (C3Mut) and wild-type streptavidin (Stv). The C3Mut moiety mediates endocytosis into macrophages, whereas Stv functions as an adaptor protein for attaching biotinylated molecules to facilitate their subsequent internalization. First, a bioconjugate consisting of recombinant C3Mut and Stv was generated via a thioether linkage that tightly interacted with biotinylated bovine serum albumin as demonstrated by dot blot analysis. We then showed the internalization of C3Mut-Stv into J774A.1 macrophages by confocal microscopy and observed translocation into the cytosol using cell fractionation. The C3Mut-Stv bioconjugate did not affect cell viability. Next, we prepared mono-biotinylated RNase A, which was attached to the C3Mut-Stv transporter, and demonstrated its C3Mut-Stv-mediated delivery into the cytosol of J774A.1 cells. Finally, C3Mut-Stv also promoted the efficient uptake of mono-biotinylated lysozyme into J774A.1 cells, highlighting its versatility. This study intriguingly demonstrates the use of the novel C3Mut-Stv delivery system for protein transduction and may provide a basis for future applications, in particular, of cytotoxic RNase A mutants.  相似文献   

19.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

20.
Adenosine diphosphate (ADP)‐ribosylation is a post‐translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP‐ribosylation reactions are the poly(ADP‐ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP‐ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP‐ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP‐ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP‐interacting protein that removes mono(ADP‐ribosyl)ation on glutamate amino acid residues in PARP‐modified proteins. X‐ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl‐(ADP‐ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP‐ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号