共查询到20条相似文献,搜索用时 15 毫秒
1.
We quantified a broad range of Arabidopsis thaliana (Col‐0) leaf phenotypes for initially warm‐grown (25/20 °C day/night) plants that were exposed to cold (5 °C) for periods of a few hours to 45 d before being transferred back to the warm, where leaves were allowed to mature. This allowed us to address the following questions: (1) For how long do warm‐grown plants have to experience cold before developing leaves become irreversibly cold acclimated? (2) To what extent is the de‐acclimation process associated with changes in leaf anatomy and physiology? We show that leaves that experience cold for extended periods during early development exhibit little plasticity in either photosynthesis or respiration, and they do not revert to a warm‐associated carbohydrate profile. The eventual expansion rate in the warm was inversely related to the duration of previous cold treatment. Moreover, cold exposure of immature/developing leaves for as little as 5 d resulted in irreversible changes in the morphology of leaves that subsequently matured in the warm, with 15 d cold being sufficient for a permanent alteration of leaf anatomy. Collectively, these results highlight the impact of transitory cold during early leaf development in determining the eventual phenotype of leaves that mature in the warm. 相似文献
2.
Flood response is a crucial component of the life strategy of many plants, but it is seldom studied in non-flooded tolerant species, even though they may be subjected to stressful environmental conditions. Phenotypic plasticity in reaction to environmental stress affects the whole plant phenotype and can alter the character correlations that constitute the phenotypic architecture of the individual, yet few studies have investigated the lability of phenotypic integration to water regime. Moreover, little has been done to date to quantify the sort of selective pressures that different components of a plant's phenotype may be experiencing under contrasting water regimes. Genetic differentiation and phenotypic plasticity at the single-trait and multivariate levels were investigated in 47 accessions of the weedy plant Arabidopsis thaliana, and the relationship of plastic characters to reproductive fitness was quantified. Results indicate that these plants tend to be highly genetically differentiated for all traits, in agreement with predictions made on the basis of environmental variation and mating system. Varied patterns of apparent selection under flooded and non-flooded conditions were also uncovered, suggesting trade-offs in allocation between roots and above-ground biomass, as well as between leaves and reproductive structures. While the major components of the plants' multivariate phenotypic architecture were not significantly affected by environmental changes, many of the details were different under flooded and non-flooded conditions. 相似文献
3.
There are large inter- and intraspecific differences in the temperature dependence of photosynthesis, but the physiological cause of the variation is poorly understood. Here, the temperature dependence of photosynthesis was examined in three ecotypes of Plantago asiatica transplanted from different latitudes, where the mean annual temperature varies between 7.5 and 16.8 degrees C. Plants were raised at 15 or 30 degrees C, and the CO(2) response of photosynthetic rates was determined at various temperatures. When plants were grown at 30 degrees C, no difference was found in the temperature dependence of photosynthesis among ecotypes. When plants were grown at 15 degrees C, ecotypes from a higher latitude maintained a relatively higher photosynthetic rate at low measurement temperatures. This difference was caused by a difference in the balance between the capacities of two processes, ribulose-1,5-bisphosphate regeneration (J(max)) and carboxylation (V(cmax)), which altered the limiting step of photosynthesis at low temperatures. The organization of photosynthetic proteins also varied among ecotypes. The ecotype from the highest latitude increased the J(max) : V(cmax) ratio with decreasing growth temperature, while that from the lowest latitude did not. It is concluded that nitrogen partitioning in the photosynthetic apparatus and its response to growth temperature were different among ecotypes, which caused an intraspecific variation in temperature dependence of photosynthesis. 相似文献
4.
5.
Variation in flowering time of Arabidopsis thaliana was studied in an experiment with mutant lines. The pleiotropic effects of flowering time genes on morphology and reproductive yield were assessed under three levels of nutrient supply. At all nutrient levels flowering time and number of rosette leaves at flowering varied among mutant lines. The relationship between these two traits depended strongly on nutrient supply. A lower nutrient supply first led to an extension of the vegetative phase, while the mean number of leaves at flowering was hardly affected. A further reduction resulted in no further extension of the vegetative phase and, on average, plants started flowering with a lower leaf number. At low nutrients, early flowering affected the timing of production of siliques rather than the total output, whereas late flowering was favorable at high nutrients. This may explain the fact that many plant species flower at a relatively small size under poor conditions. Flowering time genes had pleiotropic effects on the leaf length, number of rosette and cauline leaves, and number of axillary flowering shoots of the main inflorescence. Silique production was positively correlated with the number of axillary shoots of the main inflorescence; the number of axillary primordia appeared to have a large impact on reproductive yield. 相似文献
6.
Polyploid species possess more than two sets of chromosomes and may show high gene redundancy, hybrid vigor, and masking of deleterious alleles compared to their parent species. Following this, it is hypothesized that this makes them better at adapting to novel environments than their parent species, possibly due to phenotypic plasticity. The allopolyploid Arabidopsis suecica and its parent species A. arenosa and A. thaliana were chosen as a model system to investigate relationships between phenotypic plasticity, fitness, and genetic variation. Particularly, we test if A. suecica is more plastic, show higher genetic diversity, and/or have higher fitness than its parent species. Wild Norwegian populations of each species were analyzed for phenotypic responses to differences in availability of nutrient, water, and light, while genetic diversity was assessed through analysis of AFLP markers. Arabidopsis arenosa showed a higher level of phenotypic plasticity and higher levels of genetic diversity than the two other species, probably related to its outbreeding reproduction strategy. Furthermore, a general positive relationship between genetic diversity and phenotypic plasticity was found. Low genetic diversity was found in the inbreeding A. thaliana. Geographic spacing of populations might explain the clear genetic structure in A. arenosa, while the lack of structure in A. suecica could be due to coherent populations. Fitness measured as allocation of resources to reproduction, pointed toward A. arenosa having lower fitness under poor environmental conditions. Arabidopsis suecica, on the other hand, showed tendencies toward keeping up fitness under different environmental conditions. 相似文献
7.
以拟南芥(Arabidopsis thaliana)两种基因型(ws-0和col-0)材料,采用复因子混合水平正交试验设计开展盆栽实验,研究了土壤盐分、土壤水分、光照强度、去叶处理等生态因子及其交互作用对受试植株18个表型特征的影响.结果表明生态因子对植物表型可塑性的影响是有针对性的:土壤水分主要影响植物体构件数目;土壤盐分主要影响生物量、角果数及种籽总数等直接反映植株适合度的表型特征;光照条件则主要影响植物的物候表型特征.植物体表型可塑性的方向随水分梯度的变化而发生改变.生态因子交互作用对植物表型可塑性的影响效果不是各因子独立作用的简单加和:对某个表型特征都有显著影响的两个生态因子其交互作用对该特征可能没有影响;反之,受两个生态因子交互作用影响显著的表型特征也可能不受它们的独立影响.在对生态因子交互作用作出响应时,col-0的9个特征表现出可塑性,而ws-0仅有4个表型是可塑的;同一基因型内彼此相关的表型特征在可塑性上也具一致性.抽苔时莲座叶数与角果平均籽粒数不受任何生态因子及其交互作用的影响,这两个表型作为数量特征而未表现出可塑性. 相似文献
8.
- The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short and long term, despite being collected in the same geographical region, near Aarhus, Denmark.
- The distribution of C. submersum is narrower globally and does not extend as far north as C. demersum, which is a cosmopolitan species. Results from short‐term (within minutes) temperature‐response curves and distributional patterns corresponded well with the long‐term (weeks) results obtained, but with some important deviations. The long‐term responses of the two species to low temperature (12 °C) were more similar than expected. In contrast, high temperature (35 °C), which stimulated photosynthesis in C. submersum in the short term, inhibited photosynthesis in the long term and resulted in lower growth rates of C. submersum, both compared to C. demersum and to growth rates at intermediate temperatures (18 and 25 °C).
- The long‐term acclimation strategy differed between the two species. Ceratophyllum demersum achieved homeostasis in photosynthesis and respiration rates, and the temperature optimum for photosynthesis changed according to its acclimation temperature. In contrast, C. submersum had a homeostatic response to the ratio of dark respiration to gross photosynthetic capacity and did not change its temperature optimum. Hence, this study highlights key issues that need to be examined carefully to improve models predicting future temperature responses of aquatic plants.
9.
Rafal Lasota Adam Sokolowski Katarzyna Smolarz Ludmila Sromek Magdalena Dublinowska 《Invertebrate Biology》2018,137(3):250-263
The estuarine bivalves Limecola balthica and Mya arenaria are common inhabitants of marine soft bottom habitats in the Northern Hemisphere. Both species are able to live under a wide range of environmental conditions including variable salinity. However, in L. balthica there is high genetic variability, and populations are often genetically adapted to local conditions. By contrast, genetic diversity in M. arenaria is low across the species’ geographic range, which attests to acclimatization to different conditions. We hypothesized that individuals of M. arenaria should perform better under osmotic stress. We tested this hypothesis by performing a 5‐week experiment that exposed individuals of both clam species to hypo‐ and hyperosmotic conditions. A multiple biomarker approach that included physiological, biochemical, and histological markers was used to assess bivalve performance. Exposure to the different salinities induced biological responses that particularly affected respiratory activity in both species tested, but these responses were much more pronounced in individuals of L. balthica. The results confirmed the hypothesis that the phenotypic plasticity of M. arenaria was more pronounced and reflected a different strategy of adapting to heterogeneous habitats. 相似文献
10.
11.
Potatoes (Solanum tuberosum L., cv. Bintje) were grown in a naturally lit glasshouse. Laboratory measurements on leaves at three insertion levels showed a decline with leaf age in photosynthetic capacity and in stomatal conductance at near saturating irradiance. Conductance declined somewhat more with age than photosynthesis, resulting in a smaller internal CO2 concentration in older relative to younger leaves. Leaves with different insertion number behaved similarly. The changes in photosynthesis rate and in nitrogen content with leaf age were closely correlated. When PAR exceeded circa 100 W m–2 the rate of photosynthesis and stomatal conductance changed proportionally as indicated by a constant internal CO2 concentration. The photosynthesis-irradiance data were fitted to an asymptotic exponential model. The parameters of the model are AMAX, the rate of photosynthesis at infinite irradiance, and EFF, the slope at low light levels. AMAX declined strongly with leaf age, as did EFF, but to a smaller extent. During drought stress photosynthetic capacity declined directly with decreasing water potential (range –0.6 to –1.1 MPa). Initially, stomatal conductance declined faster than photosynthetic capacity.Abbreviations LNx leaf number x, counted in acropetal direction - DAP days after planting - DALA days after leaf appearance - Ci CO2 concentration in the leaf - Ca CO2 concentration in ambient air - LWP leaf water potential - OP osmotic potential - PAR photosynthetically active radiation 相似文献
12.
Pigliucci M 《American journal of botany》1997,84(7):887-895
While phenotypic plasticity has been the focus of much research and debate in the recent ecological and evolutionary literature, the developmental nature of the phenomenon has been mostly overlooked. A developmental perspective must ultimately be an integral part of our understanding of how organisms cope with heterogeneous environments. In this paper I use the rapid cycling Arabidopsis thaliana to address the following questions concerning developmental plasticity. (1) Are there genetic and/or environmental differences in parameters describing ontogenetic trajectories? (2) Is ontogenetic variation produced by differences in genotypes and/or environments for two crucial traits of the reproductive phase of the life cycle, stem elongation and flower production? (3) Is there ontogenetic variability for the correlation between the two characters? I found genetic variation, plasticity, and variation for plasticity affecting at least some of the growth parameters, indicating potential for evolution via heterochronic shifts in ontogenetic trajectories. Within-population differences among families are determined before the onset of the reproductive phase, while among-population variation is the result of divergence during the reproductive phase of the ontogeny. Finally, the ontogenetic profiles of character correlations are very distinct between the ecologically meaningful categories of early- and late-flowering “ecotypes” in this species, and show susceptibility to environmental change. 相似文献
13.
Plant growth and development is profoundly influenced by environmental conditions that laboratory experimentation typically attempts to control. However, growth conditions are not uniform between or even within laboratories and the extent to which these differences influence plant growth and development is unknown. Experiments with wild-type Arabidopsis thaliana were designed to quantify the influences of parental environment and seed size on growth and development in the next generation. A single lot of seed was planted in six environmental chambers and grown to maturity. The seed produced was mechanically sieved into small and large size classes then grown in a common environment and subjected to a set of assays spanning the life cycle. Analysis of variance demonstrated that seed size effects were particularly significant early in development, affecting primary root growth and gravitropism, but also flowering time. Parental environment affected progeny germination time, flowering and weight of seed the progeny produced. In some cases, the parental environment affected the magnitude of (interacted with) the observed seed size effects. These data indicate that life history circumstances of the parental generation can affect growth and development throughout the life cycle of the next generation to an extent that should be considered when performing genetic studies. 相似文献
14.
Nectary and gender‐biased nectar production in dichogamous Chamaenerion angustifolium (L.) Scop. (Onagraceae)
下载免费PDF全文

Sebastian Antoń Bożena Denisow Elwira Komoń‐Janczara Zdzisław Targoński 《Plant Species Biology》2017,32(4):380-391
In dichogamous plants, nectar characteristics (i.e. nectar amount and its composition) can differ between sexual phases. In the present study, we investigated the structural organization of the floral nectary, nectar production and carbohydrate composition in the protandrous Chamaenerion angustifolium (L.) Scop. (Onagraceae). The receptacular nectary consisted of an epidermis with numerous nectarostomata, several layers of photosynthetic secretory parenchyma, and subsecretory parenchyma. Nectariferous tissue was not directly vascularized and starch grains were rarely observed in the secretory cells, occurring exclusively in the guard cells of modified stomata. The nectar was released via nectarostomata. The floral nectar was hexose rich (32.8/39.1/28.1% glucose/fructose/sucrose) and the total concentration was constant throughout the anthesis (47% on average). However, contrasting patterns in nectar amount and carbohydrate composition between the floral sexual phases were observed. On average, female‐phased flowers produced 1.4‐fold more nectar than male‐phased flowers, and although the nectar was sucrose rich during the male phase, it was hexose rich during the female phase, suggesting sucrose hydrolysis. 相似文献
15.
16.
The evolutionary and environmental stability of character correlations has increasingly been the focus of ecological and quantitative genetic studies. Although the genetic stability of character correlations is a central assumption of quantitative genetic models of phenotypic evolution, theoretical considerations suggest that both the genetic and the phenotypic architecture should change in response to selection and to environmental heterogeneity. We investigate genetic (population) differences and plasticity to nutrient availability of the phenotypic architecture describing the whole-plant phenotype of Arabidopsis thaliana (Brassicaceae). We found significant genetic differences among early and late flowering ecotypes in the relationships between several traits, when a path-analytical model was used to estimate character correlations. Furthermore, we found significant plasticity of several path coefficients when nutrient levels were altered. A whole-plant analysis considering all paths in the model simultaneously confirmed that populations of A. thaliana are characterized by distinct phenotypic architectures, and that these are altered in different ways by environmental changes. We discuss the implications of these findings for our understanding of selective pressure on and response by multivariate phenotypes. 相似文献
17.
CO2 responsiveness of plants: a possible link to phloem loading 总被引:2,自引:3,他引:2
Of the many responses of plants to elevated CO2, accumulation of total non-structural carbohydrates (TNC in % dry weight) in leaves is one of the most consistent. Insufficient sink activity or transport capacity may explain this obvious disparity between CO2 assimilation and carbohydrate dissipation and structural investment. If transport capacity contributes to the problem, phloem loading may be the crucial step. It has been hypothesized that symplastic phloem loading is less efficient than apoplastic phloem loading, and hence plant species using the symplastic pathway and growing under high light and good water supply should accumulate more TNC at any given CO2 level, but particularly under elevated CO2. We tested this hypothesis by carrying out CO2 enrichment experiments with 28 plant species known to belong to groups of contrasting phloem-loading type. Under current ambient CO2 symplastic loaders were found to accumulate 36% TNC compared with only 19% in apoplastic loaders (P=0.0016). CO2 enrichment to 600 μmol mol?1 increased TNC in both groups by the same absolute amount, bringing the mean TNC level to 41% in symplastic loaders (compared to 25% in apoplastic loaders), which may be close to TNC saturation (coupled with chlornplast malfunction). Eight tree species, ranked as symplastic loaders by their minor vein companion cell configuration, showed TNC responses more similar to those of apoplastic herbaceous loaders. Similar results are obtained when TNC is expressed on a unit leaf area basis, since mean specific leaf areas of groups were not significantly different. We conclude that phloem loading has a surprisingly strong effect on leaf tissue composition, and thus may translate into alterations of food webs and ecosystem functioning, particularly under high CO2. 相似文献
18.
Willian Batista‐Silva David B. Medeiros Accio Rodrigues‐Salvador Danilo M. Daloso Rebeca P. Omena‐Garcia Franciele Santos Oliveira Lilian Ellen Pino Lzaro Eustquio Pereira Peres Adriano Nunes‐Nesi Alisdair R. Fernie Agustín Zsgn Wagner L. Araújo 《Plant, cell & environment》2019,42(2):448-465
Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica—dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin‐sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes. 相似文献
19.
Leaf anatomy and morphology were studied in 11 tree species growing in an undisturbed forest and the adjoining fynbos for over 50 years. Functional anatomical results suggest that the forest and the fynbos are ecologically distinct. Moreover, leaf anatomy suggests that the foliage is primarily adapted for photosynthesis rather than for control of transpirational water loss. Forest precursor tree species and scrub species exhibit xeromorphy in the fynbos whereas they exhibit mesomorphic features inside the forest. The wide-ranging species, such as Olea capensis subsp. capensis, simulated the response of the forest precursors, with the cuticle being phenotypically plastic between the forest and the fynbos but not between the stream and non-stream habitats. Finally, the forest precursors, the scrub species, and the wide-ranging taxa seem to have anatomical characters which can be modified in the fynbos and therefore allow its colonization by a variety of different species. 相似文献
20.
对4个木槿种下类群叶片结构的发育可塑性进行了比较研究。(1)木槿 4 个种下类群的叶片在栅栏组织厚度、下表皮厚度、上表皮气孔密度、上下表皮气孔密度比,叶片厚度以及中脉维管组织等性状上均表现出较大的发育可塑性,这种可塑性对叶片适应植株光热综合因子的时空异质性具有重要意义。(2)木槿 4 个种下类群的同类型叶片在解剖学性状上的变异很小,即性状具有很大的稳定性。针对这一特点,对 4 个木槿种下类群一年生茎初生叶片结构的比较研究表明,紫花单瓣木槿和白花重瓣木槿之间的亲缘关系较近,雅致木槿和牡丹木槿亦存在较近的亲缘关系。研究结果支持将牡丹木槿和紫花单瓣木槿提升为亚种等级,并建议将白花重瓣木槿和雅致木槿分别看作紫花单瓣木槿和牡丹木槿的变型。 相似文献