首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parkinson’s disease (PD) patients have excessive iron depositions in substantia nigra (SN). Neuroinflammation characterized by microglial activation is pivotal for dopaminergic neurodegeneration in PD. However, the role and mechanism of microglial activation in iron-induced dopaminergic neurodegeneration in SN remain unclear yet. This study aimed to investigate the role and mechanism of microglial β-nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) activation in iron-induced selective and progressive dopaminergic neurodegeneration. Multiple primary midbrain cultures from rat, NOX2+/+ and NOX2?/? mice were used. Dopaminergic neurons, total neurons, and microglia were visualized by immunostainings. Cell viability was measured by MTT assay. Superoxide (O2 ·?) and intracellular reactive oxygen species (iROS) were determined by measuring SOD-inhibitable reduction of tetrazolium salt WST-1 and DCFH-DA assay. mRNA and protein were detected by real-time PCR and Western blot. Iron induces selective and progressive dopaminergic neurotoxicity in rat neuron–microglia–astroglia cultures and microglial activation potentiates the neurotoxicity. Activated microglia produce a magnitude of O2 ·? and iROS, and display morphological alteration. NOX2 inhibitor diphenylene iodonium protects against iron-elicited dopaminergic neurotoxicity through decreasing microglial O2 ·? generation, and NOX2?/? mice are resistant to the neurotoxicity by reducing microglial O2 ·? production, indicating that iron-elicited dopaminergic neurotoxicity is dependent of NOX2, a O2 ·?-generating enzyme. NOX2 activation is indicated by the increased mRNA and protein levels of subunits P47 and gp91. Molecules relevant to NOX2 activation include PKC-σ, P38, ERK1/2, JNK, and NF-КBP65 as their mRNA and protein levels are enhanced by NOX2 activation. Iron causes selective and progressive dopaminergic neurodegeneration, and microglial NOX2 activation potentiates the neurotoxicity. PKC-σ, P38, ERK1/2, JNK, and NF-КBP65 are the potential molecules relevant to microglial NOX2 activation.  相似文献   

2.
Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease‐like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron‐glia cultures were treated with either nanometer‐sized DEP (< 0.22 μM; 50 μg/mL), ultrafine carbon black (ufCB, 50 μg/mL), or DEP extracts (eDEP; from 50 μg/mL DEP), and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP‐induced H2O2 production in microglia. However, pre‐treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2O2 production in response to DEP. MAC1?/? mesencephalic neuron‐glia cultures were protected from DEP‐induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP‐induced microglial H2O2 production and loss of DA neuron function.  相似文献   

3.
Parkinson's disease is characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra. We have previously reported that lipopolysaccharide (LPS)-induced degeneration of dopaminergic neurons is mediated by the release of proinflammatory factors from activated microglia. Here, we report the pivotal role of NADPH oxidase in inflammation-mediated neurotoxicity, where the LPS-induced loss of nigral dopaminergic neurons in vivo was significantly less pronounced in NADPH oxidase-deficient (PHOX-/-) mice when compared with control (PHOX+/+) mice. Dopaminergic neurons in primary mensencephalic neuron-glia cultures from PHOX+/+ mice were significantly more sensitive to LPS-induced neurotoxicity in vitro when compared with PHOX-/- mice. Further, PHOX+/+ neuron-glia cultures chemically depleted of microglia failed to show dopaminergic neurotoxicity with the addition of LPS. Neuron-enriched cultures from both PHOX+/+ mice and PHOX-/- mice also failed to show any direct LPS-induced dopaminergic neurotoxicity. However, the addition of PHOX+/+ microglia to neuron-enriched cultures from either strain resulted in reinstatement of LPS-induced dopaminergic neurotoxicity, supporting the role of microglia as the primary source of NADPH oxidase-generated insult and neurotoxicity. Immunostaining for F4/80 in mensencephalic neuron-glia cultures revealed that PHOX-/- microglia failed to show activated morphology at 10 h, suggesting an important role of reactive oxygen species (ROS) generated from NADPH oxidase in the early activation of microglia. LPS also failed to elicit extracellular superoxide and produced low levels of intracellular ROS in microglia-enriched cultures from PHOX-/- mice. Gene expression and release of tumor necrosis factor alpha was much lower in PHOX-/- mice than in control PHOX+/+ mice. Together, these results demonstrate the dual neurotoxic functions of microglial NADPH oxidase: 1) the production of extracellular ROS that is toxic to dopamine neurons and 2) the amplification of proinflammatory gene expression and associated neurotoxicity.  相似文献   

4.
Manganese is one of the ubiquitous environmental pollutants that can induce an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. The present study has been carried out to investigate the effect of Mn on the expression of N‐methyl‐d ‐aspartate receptor (NR) subunit mRNAs and proteins in rat striatum when rats were in manganism. The rats were divided randomly into four groups of six males and six females each: control group (group 1) and 8, 40, and 200 μmol/kg Mn‐treated groups (groups 2–4). The control group rats were subcutaneously (s.c.) injected with normal saline. Manganese‐treated rats were s.c. injected with respectively 8, 40, and 200 μmol/kg of MnCl2 · 6H2O in normal saline. The administration of MnCl2 · 6H2O for 4 weeks significantly increased Mn concentration in the striatum. With the increase in administered MnCl2 dosage, Glu concentration and cell apoptosis rate increased significantly. The relative intensity of NR2A mRNA decreased significantly in 8 μmol/kg Mn‐treated rats. However, relative intensities of NR1 and NR2B mRNAs decreased significantly in 40 μmol/kg Mn‐treated rats. Similarly, the relative intensity of NR2A protein showed a significant decrease in 40 μmol/kg Mn‐treated rats whereas those of NR1 and NR2B decreased significantly in 200 μmol/kg Mn‐treated rats. Therefore, the expression of NR2A mRNA and protein were much more sensitive to Mn than that of NR1 and NR2B. In conclusion, the results suggested that Mn induced nerve cell damage by increasing extracellular Glu level and altered expression of NR subunit mRNAs and proteins in rat striatum. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:1–9, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20306  相似文献   

5.
6.
Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.  相似文献   

7.
Parkinson’s disease (PD), one of the most common neurodegenerative disorders, is characterized by progressive neurodegeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). DJ-1 acts essential roles in neuronal protection and anti-neuroinflammatory response, and its loss of function is tightly associated with a familial recessive form of PD. However, the molecular mechanism of DJ-1 involved in neuroinflammation is largely unclear. Here, we found that wild-type DJ-1, rather than the pathogenic L166P mutant DJ-1, directly binds to the subunit p65 of nuclear factor-κB (NF-κB) in the cytoplasm, and loss of DJ-1 promotes p65 nuclear translocation by facilitating the dissociation between p65 and NF-κB inhibitor α (IκBα). DJ-1 knockout (DJ-1−/−) mice exhibit more microglial activation compared with wild-type littermate controls, especially in response to lipopolysaccharide (LPS) treatment. In cellular models, knockdown of DJ-1 significantly upregulates the gene expression and increases the release of LPS-treated inflammatory cytokines in primary microglia and BV2 cells. Furthermore, DJ-1 deficiency in microglia significantly enhances the neuronal toxicity in response to LPS stimulus. In addition, pharmacological blockage of NF-κB nuclear translocation by SN-50 prevents microglial activation and alleviates the damage of DA neurons induced by microglial DJ-1 deficiency in vivo and in vitro. Thus, our data illustrate a novel mechanism by which DJ-1 facilitates the interaction between IκBα and p65 by binding to p65 in microglia, and thus repressing microglial activation and exhibiting the protection of DA neurons from neuroinflammation-mediated injury in PD.Subject terms: Cell death in the nervous system, Parkinson''s disease  相似文献   

8.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra (SN). The present study was designed to examine the therapeutic effect of hydrogen sulfide (H2S, a novel biological gas) on PD. The endogenous H2S level was markedly reduced in the SN in a 6‐hydroxydopamine (6‐OHDA)‐induced PD rat model. Systemic administration of NaHS (an H2S donor) dramatically reversed the progression of movement dysfunction, loss of tyrosine‐hydroxylase positive neurons in the SN and the elevated malondialdehyde level in injured striatum in the 6‐OHDA‐induced PD model. H2S specifically inhibited 6‐OHDA evoked NADPH oxidase activation and oxygen consumption. Similarly, administration of NaHS also prevented the development of PD induced by rotenone. NaHS treatment inhibited microglial activation in the SN and accumulation of pro‐inflammatory factors (e.g. TNF‐α and nitric oxide) in the striatum via NF‐κB pathway. Moreover, significantly less neurotoxicity was found in neurons treated with the conditioned medium from microglia incubated with both NaHS and rotenone compared to that with rotenone only, suggesting that the therapeutic effect of NaHS was, at least partially, secondary to its suppression of microglial activation. In summary, we demonstrate for the first time that H2S may serve as a neuroprotectant to treat and prevent neurotoxin‐induced neurodegeneration via multiple mechanisms including anti‐oxidative stress, anti‐inflammation and metabolic inhibition and therefore has potential therapeutic value for treatment of PD.  相似文献   

9.
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid‐2‐related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti‐oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti‐oxidant stress and anti‐inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)‐induced DA neuronal damage was performed to investigate EA‐mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D‐enciched, MN9D‐BV‐2 and MN9D‐C6 cell co‐cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT‐induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA‐mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT‐induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA‐mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2‐dependent manner.  相似文献   

10.
Effects of manganese salt (MnCl2) on growth of Spirulina platensis and capacity of the cyanobacteria to accumulate the metal in various cell components were studied. S. platensis cells were shown to tolerate high concentrations of manganese and preserve, although strongly suppressed, the capacity to grow in the medium containing 5.1 mM MnCl2. The concentrations of manganese that did not inhibit growth considerably altered cell ultrastructure and changed the protein profile. The accumulation of manganese in S. platensis cells was proportional to the period of culturing and manganese concentration in the medium, reaching a plateau at about 2.5 mM. A threshold intracellular concentration of this metal is estimated as 28 ± 3 μmol/g dry wt. The fractionation of the manganese-enriched biomass demonstrated that the major portion of intracellular manganese (over 90%) was found in the total protein fraction. The chromatographic separation of the soluble protein fraction showed that manganese was incorporated into proteins with molecular weight of 5 to 15 kD. Dry biomass adsorbed manganese cations; this evidence seems to indicate a considerable contribution of biosorption to manganese accumulation by S. platensis cells.  相似文献   

11.
Nanomolar β‐amyloid peptide (Aβ) can induce neuronal loss in culture by activating microglia to phagocytose neurons. We report here that this neuronal loss is mediated by the bridging protein lactadherin/milk‐fat globule epidermal growth factor‐like factor 8 (MFG‐E8), which is released by Aβ‐activated microglia, binds to co‐cultured neurons and opsonizes neurons for phagocytosis by microglia. Aβ stimulated microglial phagocytosis, but did not opsonize neurons for phagocytosis. Aβ (250 nM) induced delayed neuronal loss in mixed glial‐neuronal mouse cultures that required microglia and occurred without increasing neuronal apoptosis or necrosis. This neuronal death/loss was prevented by antibodies to MFG‐E8 and was absent in cultures from Mfge8 knockout mice (leaving viable neurons), but was reconstituted by addition of recombinant MFG‐E8. Thus, nanomolar Aβ caused neuronal death by inducing microglia to phagocytose otherwise viable neurons via MFG‐E8. The direct neurotoxicity of micromolar Aβ was not affected by MFG‐E8. The essential role of MFG‐E8 in Aβ‐induced phagoptosis, suggests this bridging protein as a potential therapeutic target to prevent neuronal loss in Alzheimer's disease.  相似文献   

12.
13.

Background

Acute spinal cord injury (SCI) leads to a series of reactive changes and causes severe neurological deficits. A pronounced inflammation contributes to secondary pathology after SCI. Astroglia respond to SCI by proliferating, migrating, and altering phenotype. The impact of reactive gliosis on the pathogenesis of SCI is not fully understood. Our previous study has identified an inflammatory modulating protein, proliferation related acidic leucine-rich protein (PAL31) which is upregulated in the microglia/macrophage of injured cords. Because PAL31 participates in cell cycle progression and reactive astroglia often appears in the injured cord, we aim to examine whether PAL31 is involved in glial modulation after injury.

Results

Enhanced PAL31 expression was shown not only in microglia/macrophages but also in spinal astroglia after SCI. Cell culture study reveal that overexpression of PAL31 in mixed glial cells or in C6 astroglia significantly reduced LPS/IFNγ stimulation. Further, enhanced PAL31 expression in C6 astroglia protected cells from H2O2 toxicity; however, this did not affect its proliferative activity. The inhibiting effect of PAL31 on LPS/IFNγ stimulation was observed in glia or C6 after co-culture with neuronal cells. The results demonstrated that the overexpressed PAL31 in glial cells protected neuronal damages through inhibiting NF-kB signaling and iNOS.

Conclusions

Our data suggest that PAL31upregulation might be beneficial after spinal cord injury. Reactive gliosis might become a good target for future therapeutic interventions.  相似文献   

14.
Manganese (Mn) is an essential trace element for humans. However, manganism would be caused by excessive Mn. The mechanisms underlying excitotoxicity induced by manganism are poorly understood. As it is known to us, glutamate (Glu) is the most prevalent excitatory neurotransmitter. To determine the possible role of dysfunction of Glu transportation and metabolism in Mn-induced excitotoxicity, the rats were ip injected with different dose of MnCl2 (0, 50, 100, and 200 μmol/kg), the levels of Mn and activities of GS, PAG, Na+-K+-ATPase, and Ca2+-ATPase in striatum were investigated. In addition, effect of 20.38 μmol/kg pinacidil (K+ channel opener) or 2.4 μmol/kg nimodipine (Ca2+ channel blocker) were studied at 200 μmol/kg MnCl2. With dose-dependent inhibition of GS, Na+-K+-ATPase, and Ca2+-ATPase activities, increase of Mn levels and PAG activity were observed. Further investigation indicated that pre-treatment of pinacidil or nimodipine reversed toxic effect of MnCl2 significantly. These results suggested that MnCl2 could induce dysfunction of Glu transportation and metabolism by augmenting the excitotoxicity dose-dependently; pinacidil and nimodipine might antagonize manganese neurotoxicity.  相似文献   

15.
The aim of this study is to determine the effects of intrastriatal administration of MnCl2, on the extracellular levels of dopamine (DA) and metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in basal conditions and stimulated by depolarization with KCl and pargyline administration. Also, we studied the effect of MnCl2 on extracellular levels of l-Dopa in the presence of aromatic amino acid decarboxylase (AADC) inhibitor 3-hydroxybencilhydracine-HCl (NSD 1015). This study concluded that MnCl2, reduced the basal and K+-stimulated DA-release in striatum, without notably affecting the DOPAC and HVA levels. Intraperitoneal injection of pargyline increased striatal DA levels, decreasing DOPAC and HVA levels. The infusion of MnCl2 removed the increase in DA levels, without affecting DOPAC and HVA levels. Perfusion of NSD 1015 increased the extracellular levels of l-DOPA in striatum, and MnCl2 increased the effect of NSD1015 on l-Dopa.  相似文献   

16.
17.
Sohn MJ  Noh HJ  Yoo ID  Kim WG 《Life sciences》2007,80(18):1706-1712
We investigated the protective activity of radicicol, an antifungal antibiotic, against inflammation-induced neurotoxicity in neuron-glia cultures. Radicicol potently prevented the loss of neuronal cell bodies and neurites from LPS/IFN-gamma-induced neurotoxicity in rat cortical neuron-glia cultures with an EC(50) value of 0.09 microM. Radicicol inhibited the LPS/IFN-gamma-induced expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO) in microglia. Additionally, radicicol decreased the LPS/IFN-gamma-induced release of tumor necrosis factor-alpha (TNF-alpha) in the cultures. The inhibitory potency of radicicol against the production of NO and TNF-alpha was well correlated with the protection of neurons. These results suggest that the protective effect of radicicol against LPS/IFN-gamma-induced neuronal cell death in neuron-glia cultures is mediated via the inhibition of TNF-alpha release, as well as the suppression of iNOS expression in microglia.  相似文献   

18.
Hemopexin provides neuroprotection in mouse models of stroke and intracerebral hemorrhage and protects neurons in vitro against heme or reactive oxygen species (ROS) toxicity via heme oxygenase‐1 (HO1) activity. To model human brain neurons experiencing hemorrhages and inflammation, we used human neuroblastoma cells, heme–hemopexin complexes, and physiologically relevant ROS, for example, H2O2 and HOCl, to provide novel insights into the underlying mechanism whereby hemopexin safely maintains heme and iron homeostasis. Human amyloid precursor protein (hAPP), needed for iron export from neurons, is induced ~twofold after heme–hemopexin endocytosis by iron from heme catabolism via the iron‐regulatory element of hAPP mRNA. Heme–hemopexin is relatively resistant to damage by ROS and retains its ability to induce the cytoprotective HO1 after exposure to tert‐butylhydroperoxide, although induction is impaired, but not eliminated, by exposure to high concentrations of H2O2 in vitro. Apo‐hemopexin, which predominates in non‐hemolytic states, resists damage by H2O2 and HOCl, except for the highest concentrations likely in vivo. Heme–albumin and albumin are preferential targets for ROS; thus, albumin protects hemopexin in biological fluids like CSF and plasma where it is abundant. These observations provide strong evidence that hemopexin will be neuroprotective after traumatic brain injury, with heme release in the CNS, and during the ensuing inflammation. Hemopexin sequesters heme, thus preventing unregulated heme uptake that leads to toxicity; it safely delivers heme to neuronal cells; and it activates the induction of proteins including HO1 and hAPP that keep heme and iron at safe levels in neurons.  相似文献   

19.
1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP+ exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP+ exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP+ concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP+ depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP+-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP+-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP+-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP+ on neuronal DA homeostasis and neurotoxicity.  相似文献   

20.
Microglia are present in an activated state in multiple sclerosis lesions. Incubation of primary cultured rat microglia with rat-brain derived myelin (0.1–1 μg/mL) for 24 h induced microglial activation; cells displayed enhanced ED1 staining, expression of inducible nitric oxide synthase, production and release of the cytokine tumour necrosis factor-α and glutamate release. Exposure of microglia to myelin induced the expression of neuronal caspases and ultimately neuronal death in cultured cerebellar granule cell neurons; neurotoxicity was directly because of microglial-derived soluble toxins. Co-incubation of microglia with agonists or antagonists of different metabotropic glutamate receptor (mGluR) subtypes ameliorated microglial neurotoxicity by inhibiting soluble neurotoxin production. Activation of microglial mGluR2 exacerbated myelin-evoked neurotoxicity whilst activation of mGluR3 was protective as was activation of group III mGluRs. These data show that myelin-induced microglial neurotoxicity can be prevented by regulation of mGluRs and suggest these receptors on microglia may be promising targets for therapeutic intervention in multiple sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号