首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species data held in museum and herbaria, survey data and opportunistically observed data are a substantial information resource. A key challenge in using these data is the uncertainty about where an observation is located. This is important when the data are used for species distribution modelling (SDM), because the coordinates are used to extract the environmental variables and thus, positional error may lead to inaccurate estimation of the species–environment relationship. The magnitude of this effect is related to the level of spatial autocorrelation in the environmental variables. Using local spatial association can be relevant because it can lead to the identification of the specific occurrence records that cause the largest drop in SDM accuracy. Therefore, in this study, we tested whether the SDM predictions are more affected by positional uncertainty originating from locations that have lower local spatial association in their predictors. We performed this experiment for Spain and the Netherlands, using simulated datasets derived from well known species distribution models (SDMs). We used the K statistic to quantify the local spatial association in the predictors at each species occurrence location. A probabilistic approach using Monte Carlo simulations was employed to introduce the error in the species locations. The results revealed that positional uncertainty in species occurrence data at locations with low local spatial association in predictors reduced the prediction accuracy of the SDMs. We propose that local spatial association is a way to identify the species occurrence records that require treatment for positional uncertainty. We also developed and present a tool in the R environment to target observations that are likely to create error in the output from SDMs as a result of positional uncertainty.  相似文献   

2.
Aim To investigate the impact of positional uncertainty in species occurrences on the predictions of seven commonly used species distribution models (SDMs), and explore its interaction with spatial autocorrelation in predictors. Methods A series of artificial datasets covering 155 scenarios including different combinations of five positional uncertainty scenarios and 31 spatial autocorrelation scenarios were simulated. The level of positional uncertainty was defined by the standard deviation of a normally distributed zero‐mean random variable. Each dataset included two environmental gradients (predictor variables) and one set of species occurrence sample points (response variable). Seven commonly used models were selected to develop SDMs: generalized linear models, generalized additive models, boosted regression trees, multivariate adaptive regression spline, random forests, genetic algorithm for rule‐set production and maximum entropy. A probabilistic approach was employed to model and simulate five levels of error in the species locations. To analyse the propagation of positional uncertainty, Monte Carlo simulation was applied to each scenario for each SDM. The models were evaluated for performance using simulated independent test data with Cohen’s Kappa and the area under the receiver operating characteristic curve. Results Positional uncertainty in species location led to a reduction in prediction accuracy for all SDMs, although the magnitude of the reduction varied between SDMs. In all cases the magnitude of this impact varied according to the degree of spatial autocorrelation in predictors and the levels of positional uncertainty. It was shown that when the range of spatial autocorrelation in the predictors was less than or equal to three times the standard deviation of the positional error, the models were less affected by error and, consequently, had smaller decreases in prediction accuracy. When the range of spatial autocorrelation in predictors was larger than three times the standard deviation of positional error, the prediction accuracy was low for all scenarios. Main conclusions The potential impact of positional uncertainty in species occurrences on the predictions of SDMs can be understood by comparing it with the spatial autocorrelation range in predictor variables.  相似文献   

3.
Species distribution models (SDMs) are a common approach to describing species’ space-use and spatially-explicit abundance. With a myriad of model types, methods and parameterization options available, it is challenging to make informed decisions about how to build robust SDMs appropriate for a given purpose. One key component of SDM development is the appropriate parameterization of covariates, such as the inclusion of covariates that reflect underlying processes (e.g. abiotic and biotic covariates) and covariates that act as proxies for unobserved processes (e.g. space and time covariates). It is unclear how different SDMs apportion variance among a suite of covariates, and how parameterization decisions influence model accuracy and performance. To examine trade-offs in covariation parameterization in SDMs, we explore the attribution of spatiotemporal and environmental variation across a suite of SDMs. We first used simulated species distributions with known environmental preferences to compare three types of SDM: a machine learning model (boosted regression tree), a semi-parametric model (generalized additive model) and a spatiotemporal mixed-effects model (vector autoregressive spatiotemporal model, VAST). We then applied the same comparative framework to a case study with three fish species (arrowtooth flounder, pacific cod and walleye pollock) in the eastern Bering Sea, USA. Model type and covariate parameterization both had significant effects on model accuracy and performance. We found that including either spatiotemporal or environmental covariates typically reproduced patterns of species distribution and abundance across the three models tested, but model accuracy and performance was maximized when including both spatiotemporal and environmental covariates in the same model framework. Our results reveal trade-offs in the current generation of SDM tools between accurately estimating species abundance, accurately estimating spatial patterns, and accurately quantifying underlying species–environment relationships. These comparisons between model types and parameterization options can help SDM users better understand sources of model bias and estimate error.  相似文献   

4.
The most common approach to predicting how species ranges and ecological functions will shift with climate change is to construct correlative species distribution models (SDMs). These models use a species’ climatic distribution to determine currently suitable areas for the species and project its potential distribution under future climate scenarios. A core, rarely tested, assumption of SDMs is that all populations will respond equivalently to climate. Few studies have examined this assumption, and those that have rarely dissect the reasons for intraspecific differences. Focusing on the arctic-alpine cushion plant Silene acaulis, we compared predictive accuracy from SDMs constructed using the species’ full global distribution with composite predictions from separate SDMs constructed using subpopulations defined either by genetic or habitat differences. This is one of the first studies to compare multiple ways of constructing intraspecific-level SDMs with a species-level SDM. We also examine the contested relationship between relative probability of occurrence and species performance or ecological function, testing if SDM output can predict individual performance (plant size) and biotic interactions (facilitation). We found that both genetic- and habitat-informed SDMs are considerably more accurate than a species-level SDM, and that the genetic model substantially differs from and outperforms the habitat model. While SDMs have been used to infer population performance and possibly even biotic interactions, in our system these relationships were extremely weak. Our results indicate that individual subpopulations may respond differently to climate, although we discuss and explore several alternative explanations for the superior performance of intraspecific-level SDMs. We emphasize the need to carefully examine how to best define intraspecific-level SDMs as well as how potential genetic, environmental, or sampling variation within species ranges can critically affect SDM predictions. We urge caution in inferring population performance or biotic interactions from SDM predictions, as these often-assumed relationships are not supported in our study.  相似文献   

5.
Aim To evaluate the ability of species distribution models (SDMs) to predict the spatial structure of tree species within their geographical ranges (how trees are distributed within their ranges). Location Continental Spain. Methods We used an extensive dataset consisting of c. 90,000 plots (1 plot km?2) where presence/absence data for 23 common Mediterranean and Atlantic tree species had been surveyed. We first generated SDMs relating the presence or absence of each species to a set of 16 environmental predictors, following a stepwise modelling process based on maximum likelihood methods. Superimposing spatial correlograms generated from the predictions of the SDMs over those generated from the raw data allowed a model–observation comparison of the nature, scale and intensity (level of aggregation) of spatial structure with the species ranges. Results SDMs predicted accurately the nature and scale of the spatial structure of trees. However, for most species, the observed intensity of spatial structure (level of aggregation of species in space) was substantially greater than that predicted by the SDMs. On average, the intensity of spatial aggregation was twice that predicted by SDMs. In addition, we also found a negative correlation between intensity of aggregation and species range size. Main conclusions Standard SDM predictions of spatial structure patterns differ among species. SDMs are apparently able to reproduce both the scale and intensity of species spatial structure within their ranges. However, one or more missing processes not included in SDMs results in species being substantially more aggregated in space than can be captured by the SDMs. This result adds to recent calls for a new generation of more biologically realistic SDMs. In particular, future SDMs should incorporate ecological processes that are likely to increase the intensity of spatial aggregation, such as source–sink dynamics, fine‐scale environmental heterogeneity and disequilibrium.  相似文献   

6.
Species distribution models (SDMs) are often calibrated using presence‐only datasets plagued with environmental sampling bias, which leads to a decrease of model accuracy. In order to compensate for this bias, it has been suggested that background data (or pseudoabsences) should represent the area that has been sampled. However, spatially‐explicit knowledge of sampling effort is rarely available. In multi‐species studies, sampling effort has been inferred following the target‐group (TG) approach, where aggregated occurrence of TG species informs the selection of background data. However, little is known about the species‐ specific response to this type of bias correction. The present study aims at evaluating the impacts of sampling bias and bias correction on SDM performance. To this end, we designed a realistic system of sampling bias and virtual species based on 92 terrestrial mammal species occurring in the Mediterranean basin. We manipulated presence and background data selection to calibrate four SDM types. Unbiased (unbiased presence data) and biased (biased presence data) SDMs were calibrated using randomly distributed background data. We used real and TG‐estimated sampling efforts in background selection to correct for sampling bias in presence data. Overall, environmental sampling bias had a deleterious effect on SDM performance. In addition, bias correction improved model accuracy, and especially when based on spatially‐explicit knowledge of sampling effort. However, our results highlight important species‐specific variations in susceptibility to sampling bias, which were largely explained by range size: widely‐distributed species were most vulnerable to sampling bias and bias correction was even detrimental for narrow‐ranging species. Furthermore, spatial discrepancies in SDM predictions suggest that bias correction effectively replaces an underestimation bias with an overestimation bias, particularly in areas of low sampling intensity. Thus, our results call for a better estimation of sampling effort in multispecies system, and cautions the uninformed and automatic application of TG bias correction.  相似文献   

7.
1.?Correlative species distribution models (SDMs) assess relationships between species distribution data and environmental features, to evaluate the environmental suitability (ES) of a given area for a species, by providing a measure of the probability of presence. If the output of SDMs represents the relationships between habitat features and species performance well, SDM results can be related also to other key parameters of populations, including reproductive parameters. To test this hypothesis, we evaluated whether SDM results can be used as a proxy of reproductive parameters (breeding output, territory size) in red-backed shrikes (Lanius collurio). 2.?The distribution of 726 shrike territories in Northern Italy was obtained through multiple focused surveys; for a subset of pairs, we also measured territory area and number of fledged juveniles. We used Maximum Entropy modelling to build a SDM on the basis of territory distribution. We used generalized least squares and spatial generalized mixed models to relate territory size and number of fledged juveniles to SDM suitability, while controlling for spatial autocorrelation. 3.?Species distribution models predicted shrike distribution very well. Territory size was negatively related to suitability estimated through SDM, while the number of fledglings significantly increased with the suitability of the territory. This was true also when SDM was built using only spatially and temporally independent data. 4.?Results show a clear relationship between ES estimated through presence-only SDMs and two key parameters related to species' reproduction, suggesting that suitability estimated by SDM, and habitat quality determining reproduction parameters in our model system, are correlated. Our study shows the potential use of SDMs to infer important fitness parameters; this information can have great importance in management and conservation.  相似文献   

8.
Predictions of future species' ranges under climate change are needed for conservation planning, for which species distribution models (SDMs) are widely used. However, global climate model-based (GCM) output grids can bias the area identified as suitable when these are used as SDM predictor variables, because GCM outputs, typically at least 50x50 km, are biologically coarse. We tested the assumption that species ranges can be equally well portrayed in SDMs operating on base data of different grid sizes by comparing SDM performance statistics and area selected by four SDMs run at seven grid sizes, for nine species of contrasting range size. Area selected was disproportionately larger for SDMs run on larger grid sizes, indicating a cut-off point above which model results were less reliable. Up to 2.89 times more species range area was selected by SDMs operating on grids above 50x50 km, compared to SDMs operating at 1 km2. Spatial congruence between areas selected as range also diverged as grid size increased, particularly for species with ranges between 20000 and 90000 km2. These results indicate the need for caution when using such data to plan future protected areas, because an overly large predicted range could lead to inappropriate reserve location selection.  相似文献   

9.
Species distribution models (SDMs) are statistical tools to identify potentially suitable habitats for species. For SDMs in river ecosystems, species occurrences and predictor data are often aggregated across subcatchments that serve as modeling units. The level of aggregation (i.e., model resolution) influences the statistical relationships between species occurrences and environmental predictors—a phenomenon known as the modifiable area unit problem (MAUP), making model outputs directly contingent on the model resolution. Here, we test how model performance, predictor importance, and the spatial congruence of species predictions depend on the model resolution (i.e., average subcatchment size) of SDMs. We modeled the potential habitat suitability of 50 native fish species in the upper Danube catchment at 10 different model resolutions. Model resolutions were derived using a 90‐m digital‐elevation model by using the GRASS‐GIS module r.watershed. Here, we decreased the average subcatchment size gradually from 632 to 2 km2. We then ran ensemble SDMs based on five algorithms using topographical, climatic, hydrological, and land‐use predictors for each species and resolution. Model evaluation scores were consistently high, as sensitivity and True Skill Statistic values ranged from 86.1–93.2 and 0.61–0.73, respectively. The most contributing predictor changed from topography at coarse, to hydrology at fine resolutions. Climate predictors played an intermediate role for all resolutions, while land use was of little importance. Regarding the predicted habitat suitability, we identified a spatial filtering from coarse to intermediate resolutions. The predicted habitat suitability within a coarse resolution was not ported to all smaller, nested subcatchments, but only to a fraction that held the suitable environmental conditions. Across finer resolutions, the mapped predictions were spatially congruent without such filter effect. We show that freshwater SDM predictions can have consistently high evaluation scores while mapped predictions differ significantly and are highly contingent on the underlying subcatchment size. We encourage building freshwater SDMs across multiple catchment sizes, to assess model variability and uncertainties in model outcomes emerging from the MAUP.  相似文献   

10.
Habitat suitability estimates derived from species distribution models (SDMs) are increasingly used to guide management of threatened species. Poorly estimating species’ ranges can lead to underestimation of threatened status, undervaluing of remaining habitat and misdirection of conservation funding. We aimed to evaluate the utility of a SDM, similar to the models used to inform government regulation of habitat in our study region, in estimating the contemporary distribution of a threatened and declining species. We developed a presence‐only SDM for the endangered New Holland Mouse (Pseudomys novaehollandiae) across Victoria, Australia. We conducted extensive camera trap surveys across model‐predicted and expert‐selected areas to generate an independent data set for use in evaluating the model, determining confidence in absence data from non‐detection sites with occupancy and detectability modelling. We assessed the predictive capacity of the model at thresholds based on (1) sum of sensitivity and specificity (SSS), and (2) the lowest presence threshold (LPT; i.e. the lowest non‐zero model‐predicted habitat suitability value at which we detected the species). We detected P. novaehollandiae at 40 of 472 surveyed sites, with strong support for the species’ probable absence from non‐detection sites. Based on our post hoc optimised SSS threshold of the SDM, 25% of our detection sites were falsely predicted as non‐suitable habitat and 75% of sites predicted as suitable habitat did not contain the species at the time of our survey. One occupied site had a model‐predicted suitability value of zero, and at the LPT, 88% of sites predicted as suitable habitat did not contain the species at the time of our survey. Our findings demonstrate that application of generic SDMs in both regulatory and investment contexts should be tempered by considering their limitations and currency. Further, we recommend engaging species experts in the extrapolation and application of SDM outputs.  相似文献   

11.
Species Distribution Models (SDMs) are widely used to understand environmental controls on species’ ranges and to forecast species range shifts in response to climatic changes. The quality of input data is crucial determinant of the model's accuracy. While museum records can be useful sources of presence data for many species, they do not always include accurate geographic coordinates. Therefore, actual locations must be verified through the process of georeferencing. We present a practical, standardized manual georeferencing method (the Spatial Analysis Georeferencing Accuracy (SAGA) protocol) to classify the spatial resolution of museum records specifically for building improved SDMs. We used the high‐elevation plant Saxifraga austromontana Wiegand (Saxifragaceae) as a case study to test the effect of using this protocol when developing an SDM. In MAXENT, we generated and compared SDMs using a comprehensive occurrence dataset that had undergone three different levels of georeferencing: (1) trained using all publicly available herbarium records of the species, minus outliers (2) trained using herbarium records claimed to be previously georeferenced, and (3) trained using herbarium records that we have manually georeferenced to a ≤ 1‐km resolution using the SAGA protocol. Model predictions of suitable habitat for S. austromontana differed greatly depending on georeferencing level. The SDMs fitted with presence locations georeferenced using SAGA outperformed all others. Differences among models were exacerbated for future distribution predictions. Under rapid climate change, accurately forecasting the response of species becomes increasingly important. Failure to georeference location data and cull inaccurate samples leads to erroneous model output, limiting the utility of spatial analyses. We present a simple, standardized georeferencing method to be adopted by curators, ecologists, and modelers to improve the geographic accuracy of museum records and SDM predictions.  相似文献   

12.
Aim Species distribution models (SDMs) have been used to address a wide range of theoretical and applied questions in the terrestrial realm, but marine‐based applications remain relatively scarce. In this review, we consider how conceptual and practical issues associated with terrestrial SDMs apply to a range of marine organisms and highlight the challenges relevant to improving marine SDMs. Location We include studies from both marine and terrestrial systems that encompass many geographic locations around the globe. Methods We first performed a literature search and analysis of marine and terrestrial SDMs in ISI Web of Science to assess trends and applications. Using knowledge from terrestrial applications, we critically evaluate the application of SDMs in marine systems in the context of ecological factors (dispersal, species interactions, aggregation and ontogenetic shifts) and practical considerations (data quality, alternative modelling approaches and model validation) that facilitate or create difficulties for model application. Results The relative importance of ecological factors to be considered when applying SDMs varies among terrestrial and marine organisms. Correctly incorporating dispersal is frequently considered an important issue for terrestrial models, but because there is greater potential for dispersal in the ocean, it is often less of a concern in marine SDMs. By contrast, ontogenetic shifts and feeding have received little attention in terrestrial SDM applications, but these factors are important to many marine SDMs. Opportunities also exist for applying more advanced SDM approaches in the marine realm, including mechanistic ecophysiological models, where water balance and heat transfer equations are simpler for some marine organisms relative to their terrestrial counterparts. Main conclusions SDMs have generally been under‐utilized in the marine realm relative to terrestrial applications. Correlative SDM methods should be tested on a range of marine organisms, and we suggest further development of methods that address ontogenetic shifts and feeding interactions. We anticipate developments in, and cross‐fertilization between, coupled correlative and process‐based SDMs, mechanistic eco‐physiological SDMs, and spatial population dynamic models for climate change and species invasion applications in particular. Comparisons of the outputs of different model types will provide insight that is useful for improved spatial management of marine species.  相似文献   

13.
Species distribution models (SDMs) are used to test ecological theory and to direct targeted surveys for species of conservation concern. Several studies have tested for an influence of species traits on the predictive accuracy of SDMs. However, most used the same set of environmental predictors for all species and/or did not use truly independent data to test SDM accuracy. We built eight SDMs for each of 24 plant species of conservation concern, varying the environmental predictors included in each SDM version. We then measured the accuracy of each SDM using independent presence and absence data to calculate area under the receiver operating characteristic curve (AUC) and true positive rate (TPR). We used generalized linear mixed models to test for a relationship between species traits and SDM accuracy, while accounting for variation in SDM performance that might be introduced by different predictor sets. All traits affected one or both SDM accuracy measures. Species with lighter seeds, animal‐dispersed seeds, and a higher density of occurrences had higher AUC and TPR than other species, all else being equal. Long‐lived woody species had higher AUC than herbaceous species, but lower TPR. These results support the hypothesis that the strength of species–environment correlations is affected by characteristics of species or their geographic distributions. However, because each species has multiple traits, and because AUC and TPR can be affected differently, there is no straightforward way to determine a priori which species will yield useful SDMs based on their traits. Most species yielded at least one useful SDM. Therefore, it is worthwhile to build and test SDMs for the purpose of finding new populations of plant species of conservation concern, regardless of these species’ traits.  相似文献   

14.

Aim

Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore erroneously predict which species comprise a given community. We test the idea that developing hypotheses about accessible area a priori can greatly improve model performance. By integrating dispersal ability via accessible area into SDM creation, we address an often‐overlooked facet of ecological niche modelling.

Innovation

By limiting the training and transference areas to theoretically accessible areas, we are creating more accurate SDMs on the basis of a taxon's explorable environments. This limitation of space and environment is a more accurate reflection of a taxon's true dispersal properties and more accurately reflects the geographical and environmental space to which a taxon is exposed. Here, we compare the predictive performance of stacked SDMs derived from spatially constrained and unconstrained training areas.

Main conclusions

Restricting a species’ training and transference areas to a theoretically accessible area greatly improves model performance. Stacked SDMs drawn from spatially restricted training areas predicted species richness and community composition more accurately than non‐restricted stacked SDMs. These accessible area‐based restrictions mimic true dispersal barriers to species and limit training areas to the suite of environments to those which a species is exposed to in nature. Furthermore, these restrictions serve to ‘clip’ predictions in geographical space, thus removing overpredictions in adjacent geographical regions where the species is known to be absent.  相似文献   

15.
Species distribution models (SDMs) have traditionally been founded on the assumption that species distributions are in equilibrium with environmental conditions and that these species–environment relationships can be used to estimate species responses to environmental changes. Insight into the validity of this assumption can be obtained from comparing the performance of correlative species distribution models with more complex hybrid approaches, i.e. correlative and process‐based models that explicitly include ecological processes, thereby accounting for mismatches between habitat suitability and species occupancy patterns. Here we compared the ability of correlative SDMs and hybrid models, which can accommodate non‐equilibrium situations arising from dispersal constraints, to reproduce the distribution dynamics of the ortolan bunting Emberiza hortulana in highly dynamic, early successional, fire driven Mediterranean landscapes. Whereas, habitat availability was derived from a correlative statistical SDM, occupancy was modeled using a hybrid approach combining a grid‐based, spatially‐explicit population model that explicitly included bird dispersal with the correlative model. We compared species occupancy patterns under the equilibrium assumption and different scenarios of species dispersal capabilities. To evaluate the predictive capability of the different models, we used independent species data collected in areas affected to different degree by fires. In accordance with the view that disturbance leads to a disparity between the suitable habitat and the occupancy patterns of the ortolan bunting, our results indicated that hybrid modeling approaches were superior to correlative models in predicting species spatial dynamics. Furthermore, hybrid models that incorporated short dispersal distances were more likely to reproduce the observed changes in ortolan bunting distribution patterns, suggesting that dispersal plays a key role in limiting the colonization of recently burnt areas. We conclude that SDMs used in a dynamic context can be significantly improved by using combined hybrid modeling approaches that explicitly account for interactions between key ecological constraints such as dispersal and habitat suitability that drive species response to environmental changes.  相似文献   

16.
The Brown bear (Ursus arctos Linnaeus, 1758) occupies contiguous areas in Eastern and Northern Europe. In Western Europe, the largest remnant populations occur in Cantabria, Spain and the Apennines, Italy. Under Italian law the bear and its occupied range are protected. The occupied range of the Apennine brown bear includes Majella National Park. However, information on the distribution within Majella NP is extrapolated and inconsistent, thus precluding evidence-based protected area and species management. To address this lack of information, bear presence records (1996–2010) were collated and corrected for observational bias. Multiple Species Distribution Models (SDMs) were created at 800 m resolution to predict year-round and seasonal bear distribution. A hierarchical, stepwise maxent SDM approach was applied using climatic, terrain, vegetation, and anthropogenic predictors of bear distribution. Occupied ranges were identified by point density analysis of bear presence. Our climate-only SDMs predicted bear presence in areas with relatively low snowfall and temperate temperatures. Year-round bear distribution was also accurately predicted by using temperate-montane elevations and mesic, mesotrophic vegetation substrates, irrespective of vegetation. Ski-resorts were negative predictors of year-round bear occurrence. Bears were predicted in autumn and winter by beech forest, in spring by meadows and in summer by a variety of vegetation categories. The regional and our local models predicted bear throughout the south. However, our predicted and occupied range in the north includes the Orta valley and exclude alpine heights, contrary to the regional models. Only our summer bear range is similar to a regional SDM. We demonstrated that multiple maxent SDMs using a modest number of observations and a comprehensive set of environmental variables may generate essential distributional information for protected area and species management where full wildlife and food source censuses are lacking.  相似文献   

17.
Species distribution models (SDMs) are frequently used to understand the influence of site properties on species occurrence. For robust model inference, SDMs need to account for the spatial autocorrelation of virtually all species occurrence data. Current methods do not routinely distinguish between extrinsic and intrinsic drivers of spatial autocorrelation, although these may have different implications for conservation. Here, we present and test a method that disentangles extrinsic and intrinsic drivers of spatial autocorrelation using repeated observations of a species. We focus on unknown habitat characteristics and conspecific interactions as extrinsic and intrinsic drivers, respectively. We model the former with spatially correlated random effects and the latter with an autocovariate, such that the spatially correlated random effects are constant across the repeated observations whereas the autocovariate may change. We tested the performance of our model on virtual species data and applied it to observations of the corncrake Crex crex in the Netherlands. Applying our model to virtual species data revealed that it was well able to distinguish between the two different drivers of spatial autocorrelation, outperforming models with no or a single component for spatial autocorrelation. This finding was independent of the direction of the conspecific interactions (i.e. conspecific attraction versus competitive exclusion). The simulations confirmed that the ability of our model to disentangle both drivers of autocorrelation depends on repeated observations. In the case study, we discovered that the corncrake has a stronger response to habitat characteristics compared to a model that did not include spatially correlated random effects, whereas conspecific interactions appeared to be less important. This implies that future conservation efforts should primarily focus on maximizing habitat availability. Our study shows how to systematically disentangle extrinsic and intrinsic drivers of spatial autocorrelation. The method we propose can help to correctly identify the main drivers of species distributions.  相似文献   

18.

Aim

Correlative species distribution models (SDMs) combined with spatial layers of climate and species' localities represent a frequently utilized and rapid method for generating spatial estimates of species distributions. However, an SDM is only as accurate as the inputs upon which it is based. Current best‐practice climate layers commonly utilized in SDM (e.g. ANUCLIM) are frequently inaccurate and biased spatially. Here, we statistically downscale 30 years of existing spatial weather estimates against empirical weather data and spatial layers of topography and vegetation to produce highly accurate spatial layers of weather. We proceed to demonstrate the effect of inaccurately quantified spatial data on SDM outcomes.

Location

The Australian Wet Tropics.

Methods

We use Boosted Regression Trees (BRTs) to generate 30 years of spatial estimates of daily maximum and minimum temperature for the study region and aggregate the resultant weather layers into ‘accuCLIM’ climate summaries, comparable with those generated by current best‐practice climate layers. We proceed to generate for seven species of rainforest skink comparable SDMs within species; one model based on ANUCLIM climate estimates and another based on accuCLIM climate estimates.

Results

Boosted Regression Trees weather layers are more accurate with respect to empirically measured temperature, particularly for maximum temperature, when compared to current best‐practice weather layers. ANUCLIM climate layers are least accurate in heavily forested upland regions, frequently over‐predicting empirical mean maximum temperature by as much as 7°. Distributions of the focal species as predicted by accuCLIM were more fragmented and contained less core distributional area.

Conclusion

Combined these results reveal a source of bias in climate‐based SDMs and indicate a solution in the form of statistical downscaling. This technique will allow researchers to produce fine‐grained, ground‐truthed spatial estimates of weather based on existing estimates, which can be aggregated in novel ways, and applied to correlative or process‐based modelling techniques.
  相似文献   

19.
Species Distribution Models (SDMs) were employed to assess the potential impact of climate change on the distribution of Pinus uncinata in the Pyrenees, where it is the dominant tree species in subalpine forest and alpine tree lines. Predicting forest response to climate change is a challenging task in mountain regions but also a conservation priority. We examined the potential impact of spatial scale on SDM projections by conducting all analyses at four spatial resolutions. We further examined the potential effect of dispersal constraints by applying a threshold distance of maximal advancement derived from a spatially explicit, individual‐based simulation model of tree line dynamics. Under current conditions, SDMs including climatic factors related to stress or growth limitation performed best. These models were then employed to project P. uncinata distribution under two emission scenarios, using data generated from several regional climate models. At the end of this century, P. uncinata is expected to migrate northward and upward, occupying habitat currently inhabited by alpine plant species. However, consideration of dispersal limitation and/or changing the spatial resolution of the analysis modified the assessment of climate change impact on mountain ecosystems, especially in the case of estimates of colonization and extinction at the regional scale. Our study highlights the need to improve the characterization of biological processes within SDMs, as well as to consider simultaneously different scales when assessing potential habitat loss under future climate conditions.  相似文献   

20.
Species distribution models (SDMs) assume equilibrium between species' distribution and the environment. However, this assumption can be violated under restricted dispersal and spatially autocorrelated environmental conditions. Here we used a model to simulate species' ranges expansion under two non-equilibrium scenarios, evaluating the performance of SDM coupled with spatial eigenvector mapping. The highest fit is for the models that include space, although the relative importance of spatial variables during the range expansion differs in the two scenarios. Incorporating space to the models was important only under colonization-lag non-equilibrium, under the expected scenario. Thus, mechanisms that generate range cohesion and determine species' distribution under climate changes can be captured by spatial modelling, with advantages compared with other techniques and in line with recent claims that SDMs have to account for more complex dynamic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号