共查询到14条相似文献,搜索用时 15 毫秒
1.
Richard F. Preziosi William E. Snyder Christopher P. Grill Allen J. Moore 《Evolution; international journal of organic evolution》1999,53(4):1312-1318
Phenotypic manipulation (or phenotypic engineering) that alters trait distributions provides a way to increase the statistical power of detecting relationships between traits and fitness. Manipulations relying on plastic responses, however, assume a specific relationship between the perturbation and the alteration of the traits when multiple traits are involved. We measured several traits, including condition measured as fluctuating asymmetry, in the ladybird beetle Harmonia axyridis under six different diets to examine how altered environments affected multiple traits and their distributions. Although diet affected fluctuating asymmetry, we found no consistent relationship between degree of asymmetry and other phenotypic measures. As expected, individual traits were altered by our treatments. Contrary to expectation, relationships among traits were not constant among diets. Our results suggest that assumptions about the relationship between condition and trait values, especially fluctuating asymmetry, cannot be made. Further, studies that use manipulated phenotypes to statistically determine the form of selection must first demonstrate that the pattern of the phenotypic correlation matrix is not itself altered by the manipulation. If the phenotypic correlation matrix is not constant, then experimental estimates of selection coefficients may not reflect selection that occurs in the wild. 相似文献
2.
Matt J. Michel Luis‐Miguel Chevin Jason H. Knouft 《Evolution; international journal of organic evolution》2014,68(5):1374-1384
Covariation between population‐mean phenotypes and environmental variables, sometimes termed a “phenotype–environment association” (PEA), can result from phenotypic plasticity, genetic responses to natural selection, or both. PEAs can potentially provide information on the evolutionary dynamics of a particular set of populations, but this requires a full theoretical characterization of PEAs and their evolution. Here, we derive formulas for the expected PEA in a temporally fluctuating environment for a quantitative trait with a linear reaction norm. We compare several biologically relevant scenarios, including constant versus evolving plasticity, and the situation in which an environment affects both development and selection but at different time periods. We find that PEAs are determined not only by biological factors (e.g., magnitude of plasticity, genetic variation), but also environmental factors, such as the association between the environments of development and of selection, and in some cases the level of temporal autocorrelation. We also describe how a PEA can be used to estimate the relationship between an optimum phenotype and an environmental variable (i.e., the environmental sensitivity of selection), an important parameter for determining the extinction risk of populations experiencing environmental change. We illustrate this ability using published data on the predator‐induced morphological responses of tadpoles to predation risk. 相似文献
3.
Allen J. Moore 《Evolution; international journal of organic evolution》1997,51(6):1920-1928
Social signals that mediate intraspecific interactions can be complex, conveying considerable information concerning the probable behavior of individuals and minimizing overt aggression and wasted energy. In the cockroach Nauphoeta cinerea, male-male competition and female mate choice are mediated by a multicomponent male-produced sex pheromone. In this study, I examine variation in this pheromone. First I measure differences among males in both individual pheromone compounds and the overall composition of the pheromone. Principal component analysis is used to quantify and describe pheromone composition. Next, I explore some of the causes and consequences of this variation by examining the pheromone of males with different social experiences. Compared to subordinate males, dominant males have significantly less variable quantities of the individual pheromone compounds and are significantly less variable in the composition of their pheromone. Because of an association between status and mating success, male-male competition can result in stabilizing sexual selection on the sex pheromone. Finally, I test the hypothesis that the pheromone compounds evolve in a manner consistent with their function. As predicted for morphologically integrated characters, the patterns of phenotypic, genetic, and environmental correlations among my measures of pheromone compounds and composition match functional patterns suggested by this study and the developmental patterns demonstrated in my previous studies. Based on these studies of the N. cinerea sex pheromone, I argue that stabilizing sexual selection shapes the evolution of pheromonal communication involved in social interactions among male N. cinerea. Further, I argue that coordinated evolution of social signals may be possible due to the morphological integration of their multiple compounds. 相似文献
4.
Laura Sullivan‐Beckers Reginald B. Cocroft 《Evolution; international journal of organic evolution》2010,64(11):3158-3171
Selection on advertisement signals arises from interacting sources including female choice, male–male competition, and the communication channel (i.e., the signaling environment). To identify the contribution of individual sources of selection, we used previously quantified relationships between signal traits and each putative source to predict relationships between signal variation and fitness in Enchenopa binotata treehoppers (Hemiptera: Membracidae). We then measured phenotypic selection on signals and compared predicted and realized relationships between signal traits and mating success. We recorded male signals, then measured lifetime mating success at two population densities in a realistic environment in which sources of selection could interact. We identified which sources best predicted the relationship between signal variation and mating success using a multiple regression approach. All signal traits were under selection in at least one of the two breeding seasons measured, and in some cases selection was variable between years. Female preference was the strongest source of selection shaping male signals. The E. binotata species complex is a model of ecological speciation initiated by host shifts. Signal and preference divergence contribute to behavioral isolation within the complex, and the finding that female mate preferences drive signal evolution suggests that speciation in this group results from both ecological divergence and sexual selection. 相似文献
5.
Stevan J. Arnold Paul A. Verrell Stephen G. Tilley 《Evolution; international journal of organic evolution》1996,50(3):1024-1033
We constructed a model for the evolution of sexual isolation by extending Lande's (1981) model of sexual selection. The model predicts that asymmetric sexual isolation is a transient phenomenon, characteristic of intermediate stages of divergence in sexually selected traits. Unlike the Kaneshiro (1976, 1980) proposal, our model does not depend upon drift and the loss of courtship elements to produce asymmetries in sexual isolation. According to our model, the direction of evolution cannot be predicted from asymmetry in sexual isolation. We tested some features of the model using data from an experimental study of sexual isolation in the salamander Desmognathus ochrophaeus. We tested for sexual isolation between 12 allopatric populations and found significant asymmetry in sexual isolation in about a quarter of the test cases. The highest degrees of asymmetry were associated with intermediate levels of divergence. A curvilinear relationship between isolation asymmetry and divergence was predicted by our model and was supported by statistical analysis of the salamander data. 相似文献
6.
Bas Zwaan R. Bijlsma R. F. Hoekstra 《Evolution; international journal of organic evolution》1995,49(4):635-648
A wild-type strain of Drosophila melanogaster was successfully selected for both fast and slow larval development. The realized heritabilities (h2) ranged from 0.20 to 0.30 for the fast lines and 0.35 to 0.60 for the slow lines. The selection applied is relevant in relation to the evolution of aging. The longevity of adults, either virgin or mated, was not affected by selection for developmental time, indicating that developmental time is not a causal determinant of life span, thus confirming the results of the studies on environmental effects on aging (Zwaan et al. 1991, 1992). However, adult body weights were higher in the slow developmental lines and lower in the fast lines, relative to the control flies. Furthermore, slow females showed relatively high early fecundity and low late fecundity, as compared with control and fast females. Mated longevities and total lifetime progeny productions were not statistically different. Previous results obtained by other authors from selection experiments on age at reproduction either supported the mutation accumulation or the negative pleiotropy theory of aging (Luckinbill et al. 1984; Rose 1984b). The impact of the reported results on the interpretation of these studies is discussed, and it is noted that direct selection on adult longevity is needed to settle this issue. 相似文献
7.
Steinar Engen Bernt‐Erik Sæther 《Evolution; international journal of organic evolution》2014,68(3):854-865
We analyze the stochastic components of the Robertson–Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. 相似文献
8.
Stephen F. Chenoweth Howard D. Rundle Mark W. Blows 《Evolution; international journal of organic evolution》2010,64(6):1849-1856
Indirect genetics effects (IGEs)—when the genotype of one individual affects the phenotypic expression of a trait in another—may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Ψ). The extent to which Ψ exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories—the evolution of interaction effects themselves. 相似文献
9.
Janis Antonovics Mike Boots Dieter Ebert Britt Koskella Mary Poss Ben M. Sadd 《Evolution; international journal of organic evolution》2013,67(1):1-9
Most species seem to be completely resistant to most pathogens and parasites. This resistance has been called “nonhost resistance” because it is exhibited by species that are considered not to be part of the normal host range of the pathogen. A conceptual model is presented suggesting that failure of infection on nonhosts may be an incidental by‐product of pathogen evolution leading to specialization on their source hosts. This model is contrasted with resistance that results from hosts evolving to resist challenge by their pathogens, either as a result of coevolution with a persistent pathogen or as the result of one‐sided evolution by the host against pathogens that are not self‐sustaining on those hosts. Distinguishing evolved from nonevolved resistance leads to contrasting predictions regarding the relationship between resistance and genetic distance. An analysis of cross‐inoculation experiments suggests that the resistance is often the product of pathogen specialization. Understanding the contrasting evolutionary origins of resistance is critical for studies on the genetics and evolution of host–pathogen interactions in human, agricultural, and natural populations. Research on human infectious disease using animal models may often study resistances that have quite contrasting evolutionary origins, and therefore very different underlying genetic mechanisms. 相似文献
10.
According to Dollo's law, once a complex structure is lost it is unlikely to be reacquired. In this article, we report new data obtained from our myology‐based cladistic analyses of primate phylogeny, which provide evidence of anatomical reversions violating Dollo's law: of the 220 character state changes unambiguously optimized in the most parsimonious primate tree, 28 (13%) are evolutionary reversions, and of these 28 reversions six (21%) occurred in the nodes that lead to the origin of modern humans; nine (32%) violate Dollo's law. In some of these nine cases, the structures that were lost in adults of the last common ancestor and are absent in adults of most subgroups of a clade are actually present in early ontogenetic stages of karyotypically normal individuals as well as in later ontogenetic stages of karyotypically abnormal members of those subgroups. Violations of Dollo's law may thus result from the maintenance of ancestral developmental pathways during long periods of trait absence preceding the reacquisition of the trait through paedomorphic events. For instance, the presence of contrahentes and intermetacarpales in adult chimpanzees is likely due to a prolonged/delayed development of the hand musculature, that is, in this case chimpanzees are more neotenic than modern humans. 相似文献
11.
Michael J. Wise Mark D. Rausher 《Evolution; international journal of organic evolution》2013,67(6):1767-1779
Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple‐herbivore communities—particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic‐selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one‐third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. 相似文献
12.
Abstract: Palaeoctopus pelagicus sp. nov. is described from the early Turonian Vallecillo Limestone in north‐eastern Mexico. The species represents the first record of a fossil octopod from the Americas and the second species of the genus Palaeoctopus. The holotype and only known specimen preserves one half of an originally bipartite gladius vestige. Soft parts are not preserved. The gladius vestige is distinguished from P. newboldi from the Santonian Limestone of Lebanon by the arrangement of fields, striation and reinforcements. The new material supports previous ideas suggesting that the paired stylets of modern Octopoda evolved through gradual reduction of a Teudopsis‐like gladius via a transitional stage similar to Palaeoctopus. The origin of Octopoda and Cirroctopoda likely dates back to a period between the Toarcian (180 Ma) and the early Turonian (93 Ma). Palaeoecological conditions in the Vallecillo ocean suggest that P. pelagicus sp. nov. inhabited the pelagic shelf. Hostile low oxygen conditions on the sea floor exclude a benthic mode of life for P. pelagicus sp. nov. 相似文献
13.
The colonial and multicellular members of the Volvocales can be arranged in order of increasing size and complexity as the “volvocine series.” This series is often assumed to reflect an evolutionary progression. The flagellar apparatuses of previously examined algae are not consistent with a simple lineage. The flagellar apparatuses of Astrephomene gubernaculifera Pocock, Gonium pectorale Müller, Platydorina caudata Kofoid, Volvox rousseletii G. S. West, and V. carteri f. weismannia (Powers) Iyengar differ from one another, and there is no apparent progression inflagellar apparatus features from the simple to complex colonial forms. We examined the flagellar apparatuses of Volvulina steinii Playfair, Eudorina elegans Ehr., and Pleodorina illinoisensis Kofoid and found them to be similar to one another. The basal bodies are connected by a distal fiber that is offset to the anti side of the cell. Two microtubular rootlets originate on the inside of the basal bodies and extend toward the syn side. The other two rootlets are oriented perpendicular to the first two and are anti-parallel to each other. A coarsely striated component underlies the four-membered rootlets and extends to the basal bodies. A proximal fiber complex connects the two basal bodies. This complex consists of a branched striated component on the cis side of each basal body. One part extends toward the anti side of the cell, while the other extends into a fibrous component that runs between basal bodies. An additional structure extends in the anti direction from the trans side of each basal body. A fibrous component extends past one basal body in all four species. This component goes past the trans basal body in Volvulina steinii and the cis basal body in E. elegans and P. illinoisensis. The flagellar apparatuses of these organisms are similar to those of G. pectorale and Volvox carteri but different from the other colonial volvocalean algae examined. The algae examined in this study plus G. pectorale and V. carteri probably share a common evolutionary history that postdates the transition from the unicellular to colonial habit. Such a shared evolutionary history is a requirement of the volvocine hypothesis. However, we have not observed progressive changes in the flagellar apparatus correlated with increasing cell number, differentiation, and sexual specialization. Thus, it is possible, but not certain, that G. pectorale, Volvulina steinii, E. elegans, P. illinoisensis, and Volvox carteri may form part of a volvocine lineage. 相似文献
14.