首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miquel, J., Torres, J., Foronda, P. and Feliu, C. 2010. Spermiogenesis and spermatozoon ultrastructure of the davaineid cestode Raillietina micracantha. — Acta Zoologica (Stockholm) 91 : 212–221 The spermiogenesis and the ultrastructural organization of the spermatozoon of the davaineid cestode Raillietina micracantha are described by means of transmission electron microscopy. Spermiogenesis begins with the formation of a zone of differentiation containing two centrioles. One of the centrioles develops a free flagellum that later fuses with a cytoplasmic extension. The nucleus migrates along the spermatid body after the proximodistal fusion of the flagellum and the cytoplasmic extension. During advanced stages of spermiogenesis a periaxonemal sheath and intracytoplasmic walls appear in the spermatids. Spermiogenesis finishes with the appearance of two helicoidal crested bodies at the base of spermatids and, finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of R. micracantha is a long and filiform cell, tapered at both ends, which lacks mitochondria. It exhibits two crested bodies of different lengths, one axoneme of the 9 + ‘1’ pattern of trepaxonematan Platyhelminthes, twisted cortical microtubules, a periaxonemal sheath, intracytoplasmic walls, granules of glycogen and a spiralled nucleus. The anterior extremity of the spermatozoon is characterized by the presence of an electron‐dense apical cone and two spiralled crested bodies while the posterior extremity of the male gamete exhibits only the axoneme and an electron‐dense posterior tip.  相似文献   

2.
Ultrastructural characters in spermiogenesis and spermatozoa are considered important tools to elucidate the phylogenetic relationships within the Platyhelminthes. In the Anoplocephalidae, ultrastructural data refer to the spermatozoon of 14 species, whereas data on spermiogenesis refer to only 7 species. The present study focused on the spermiogenesis and spermatozoon of the anoplocephalid cestode Mosgovoyia ctenoides, as revealed by transmission electron microscopy. Type IV spermiogenesis was detected, beginning with the formation of a differentiation zone containing 2 centrioles, with a centriolar adjunct and vestigial striated rootlets. Different forms of the latter character have been described in other anoplocephalids. This study supports spermiogenesis of type IV as the most frequent in the Anoplocephalidae and confirms the presence of a centriolar adjunct in yet another type IV spermiogenesis species. The spermatozoon of M. ctenoides possesses 1 axoneme of the 9+ '1' trepaxonematan type, 2 crestlike bodies, dense plates, and granules of electron-dense cytoplasmic material, nucleus, and twisted cortical microtubules. It was again confirmed that the presence of granular material and the absence of both a periaxonemal sheath and intracytoplasmic walls are constant characters in the spermatozoa of all the Anoplocephalinae.  相似文献   

3.
Marigo, A.M., Bâ, C.T. and Miquel, J. 2011. Spermiogenesis and spermatozoon ultrastructure of the dilepidid cestode Molluscotaenia crassiscolex (von Linstow, 1890), an intestinal parasite of the common shrew Sorex araneus. —Acta Zoologica (Stockholm) 92 : 116–125. Spermiogenesis in Molluscotaenia crassiscolex begins with the formation of a differentiation zone containing two centrioles. One of the centrioles develops a flagellum directly into the cytoplasmic extension. The nucleus elongates and later migrates along the spermatid body. During advanced stages of spermiogenesis, a periaxonemal sheath appears in the spermatid. Spermiogenesis finishes with the appearance of a single helicoidal crested body at the base of the spermatid and, finally, the narrowing of the ring of arched membranes causes the detachment of the fully formed spermatozoon. The mature spermatozoon of M. crassiscolex exhibits a partially detached crested body in the anterior region of the spermatozoon, one axoneme, twisted cortical microtubules, a periaxonemal sheath, and a spiralled nucleus. The anterior spermatozoon extremity is characterized by the presence of an electron‐dense apical cone and a single spiralled crested body, which is attached to the sperm cell in the anterior and posterior areas of region I, whereas in the middle area it is partially detached from the cell. This crested body is described for the first time in cestodes. The posterior extremity of the male gamete exhibits only the disorganizing axoneme. Results are discussed and compared particularly with the available ultrastructural data on dilepidids sensu lato.  相似文献   

4.
The ultrastructure of spermiogenesis and the mature spermatozoon in Catenotaenia pusilla (Cestoda: Catenotaeniidae) is described. Spermiogenesis is characterized by the presence of a single axoneme which grows on the outside of a cytoplasmic extension at an angle of 45 degrees. Flagellar rotation and proximodistal fusion are produced in this process. The centrioles lack striated roots and an intercentriolar body. In the mature spermatozoon four different regions are described. The anterior extremity is capped by an apical cone and presents two helical crest-like bodies of unequal length. The axoneme, of the 9 + '1' pattern of the Trepaxonemata, presents a periaxonemal sheath. The cortical microtubules form a spiral pattern at an angle of about 40 degrees to the hypothetical spermatozoon axis. The nucleus is kidney- to horseshoe-shaped in cross section. Granules and proteinaceus walls are not observed in the spermatozoon of C. pusilla.  相似文献   

5.
The present paper describes the ultrastructure of spermiogenesis and the spermatozoon of Macracanthorhynchus hirudinaceus, an acanthocephalan parasite of the wild boar Sus scrofa. At the beginning of spermatogenesis, spermatocytes exhibit synaptonemal complexes and 2 centrioles. In the spermatid, only 1 centriole remains, generating a flagellum with a 9+2 pattern. Another ultrastructural feature observed during the spermiogenesis of M. hirudinaceus is the condensation of the chromatin, forming a "honeycomb" structure in the old spermatid and a homogeneous, electron-dense structure in the spermatozoon. The mature spermatozoon of M. hirudinaceus presents a reversed anatomy, as has been described previously in other species of the Acanthocephala. The spermatozoon is divided into 2 parts: an axoneme, and a nucleocytoplasmic derivative. The spermatozoon flagellum exhibits a 9+2 or 9+0 pattern. The process of spermiogenesis and the ultrastructural organization of the spermatozoon of M. hirudinaceus are compared with available data regarding other acanthocephalan species.  相似文献   

6.
The mature spermatozoon of Anomotaenia quelea exhibits an apical cone of electron-dense material and two helicoidal crest-like bodies. The apical cone near its base is surrounded by a lucent cytoplasm and a spiraled layer of cortical microtubules. The crest-like bodies are of different lengths, spiraled and make an angle of 30–40° to the hypothetical spermatozoon axis. The axoneme is of the 9 + ‘1’ trepaxonematan pattern and is surrounded by a periaxonemal sheath of electron-dense material. The cytoplasm contains in regions III and IV numerous electron-dense granules situated between the periaxonemal sheath and the cortical microtubules. The posterior extremity of the spermatozoon of A. quelea exhibits a nucleus and a disorganized axoneme and cortical microtubules. This type of posterior extremity of the mature spermatozoon has never been described previously in a Dilepididae. Similarly, two crest-like bodies have not been observed before in a dilepidid cestode.  相似文献   

7.
《Zoologischer Anzeiger》2014,253(2):119-125
The mature spermatozoon of Anomotaenia quelea exhibits an apical cone of electron-dense material and two helicoidal crest-like bodies. The apical cone near its base is surrounded by a lucent cytoplasm and a spiraled layer of cortical microtubules. The crest-like bodies are of different lengths, spiraled and make an angle of 30–40° to the hypothetical spermatozoon axis. The axoneme is of the 9 + ‘1’ trepaxonematan pattern and is surrounded by a periaxonemal sheath of electron-dense material. The cytoplasm contains in regions III and IV numerous electron-dense granules situated between the periaxonemal sheath and the cortical microtubules. The posterior extremity of the spermatozoon of A. quelea exhibits a nucleus and a disorganized axoneme and cortical microtubules. This type of posterior extremity of the mature spermatozoon has never been described previously in a Dilepididae. Similarly, two crest-like bodies have not been observed before in a dilepidid cestode.  相似文献   

8.
The mature spermatozoon of Admetus pomilio is a spherical cell containing nucleus and tightly coiled flagellum. In early spermatids the Golgi apparatus forms the acrosomal vesicle and at the opposite side the distal centriole gives rise to the axonemal complex of the sperm tail. As the nucleus elongates, chromatin forms twisted filaments and the spermatid nucleus takes on a helical form. Microtubules are juxtaposed with the nucleus envelope, which is separated from a central chromatin mass by an electron lucid region. A long perforatorium, located on the border of the chromatin mass, runs helically in the nucleus from the centriolar region to subacrosomal space. During tail elongation, the anterior part of the axoneme is surrounded by a long, spiral mitochondrial sheath. In the late spermatid, chromatin filaments appear twisted and become aggregated. The nucleus and flagellum undergo further contortions in which the nucleus coils and the flagellum winds up into the body of the cell and coils in a regular fashion. The mitochondrial sheath surrounds about 2/3 of the 9 + 3 axoneme. These features of spermatid ultrastructure resemble those in the primitive Liphistiomorpha.  相似文献   

9.
The sperm of Spio setosa (Polychaeta, Spionidae) are known to be very unusual in form; here, spermiogenesis and the structure of the spermatozoon in this species are described by transmission electron microscopy. While spermiogenesis is similar to that described for many other polychaetes, two notable exceptions to this process include the synthesis of abundant ring‐shaped and tubular, membrane‐bounded cytoplasmic inclusions in the midpiece, and the differentiation of a spirally shaped sperm head. Spermatids develop as free‐floating tetrads in the male's coelom. A microtubular manchette does not develop during chromatin condensation and nuclear elongation, and the spiral acrosome forms as a single Golgi‐derived vesicle that migrates anteriorly to become housed in a deep anterior nuclear fossa. Early in spermiogenesis, numerous Golgi‐derived, membrane‐bounded cytoplasmic inclusions appear in the cytoplasm; these ultimately occupy the sperm midpiece only. The mature spermatozoon in the male has a 15‐μm‐long head consisting of a nucleus coiled like a spring and a spiral acrosome with differentiated substructure, the posterior two thirds of which sits in an anterior nuclear fossa. The midpiece is wider than the rest of the spermatozoon and contains 9–10 spherical mitochondria surrounding the two centrioles, as well as numerous membrane‐bounded conoid and tubular cytoplasmic inclusions. The axoneme has a 9 + 2 arrangement of microtubules. By contrast, stored sperm in the female's seminal receptacles have lost the midpiece inclusions but contain an abundance of glycogen. The function of the midpiece inclusions remains unresolved, and the significance of their absence in stored sperm within the seminal receptacle and the appearance of midpiece glycogen stores remains unclear and requires additional investigation.  相似文献   

10.
The process of sperm development in Phoronopsis harmeri was studied by electron microscopy. Developing spermatogenical cells are aggregated around the capillaries of the haemal plexus. The spermatogonia, which are situated around the capillary walls of the caeca, are remarkable for the presence of germ-line vesicles and contain their centrioles near the cell membrane. The spermatocytes and spermatids are flagellated cells arranged in clusters. During spermiogenesis the basal body/flagellum complex migrates to the apical pole of the spermatid. The acrosome-like structure arises from material produced by the Golgi complex. It lacks a surrounding membrane and has a fibrillar content. The nucleus elongates and the condensation of chromatin is caused by an activation of 'initiation centres'. The late spermatid and the spermatozoon appear as two-armed 'V'-shaped cells in which one arm contains the nucleus and posteriorly located mitochondria, and the other one is the axoneme. Spermatogenesis of P. harmeri is an interesting example of gamete differentiation where advanced sperm structure is combined with a plesiomorphic pattern of sperm development characterized as 'flagellate spermatogenesis'. Communicated by H.-D. Franke  相似文献   

11.
本项研究应用光学显微镜、扫描和透射电子显微镜,观察了扩张莫尼茨绦虫的精细胞分化、精子形成全过程及精子的精细结构。扩张莫尼茨绦虫的精细胞分化过程为:1)初级精原细胞主要发生于幼节的睾丸滤泡中;2)次级精原细胞发生不完全分裂形成16个细胞一簇的初级精母细胞群,以共同的中央细胞质相连;3)初级精母细胞的特征为细胞核中出现联会复合体结构;4)紧接着的第二次成熟分裂,产生64个由中央细胞质相连的细胞核较小的精细胞。精子形成始于精细胞中分化区的形成,成熟精子缺乏线粒体,具有质膜和冠状体、1—4个领域排布的质膜下皮层微管,细胞质中存在电子致密的颗粒状物质,具一个不规则形态的细胞核,具有“9 1”类型的轴丝构造,缺乏轴丝周围鞘。从精子的纵切面上可将精子区分为5个区段(Ⅰ一Ⅴ区)。在精子形成过程中,中心粒基部出现螺旋形小根结构在寄生虫中为首次报导;成熟精子具有游离鞭毛,在绦虫中为首次发现[动物学报49(3):370—379,2003]。  相似文献   

12.
B. Hosfeld 《Zoomorphology》1994,114(4):195-202
Summary The spermatophore, mature spermatozoon and spermiogenesis of Heterolaophonte minuta have been investigated by light and electron microscopy. The spermatophore contains three different secretions which are responsible for the discharge of the contents of the spermatophore, the formation of the fertilization tube and the storage of the spermatozoa. The spermatozoon represents a type new for the Copepoda. It is a filiform cell about 25 m in length, ellipsoid in transverse section and tapered at the posterior end. The elongated nucleus contains chromatin fibrils and does not possess a nuclear envelope. Posterior to the nucleus, six mitochondria are placed one after the other. The posterior part of the spermatozoon contains parallel pseudomembranes. The gamete is not helically twisted and is without a flagellum and centrioles. The most remarkable feature of the spermatozoon is an osmiophilic cap in front of the nucleus. This cap corresponds to the acrosome of the spermatozoon. Early stages of spermiogenesis take place in the testis, where the spermatids are incorporated into accessory cells. The origin of the chromatin fibrils and the glycocalyx, as well as the breakdown of the nuclear envelope and centrioles, represent the final steps of spermiogenesis which occur in the vas deferens.  相似文献   

13.
Pecio A 《Folia biologica》2003,51(1-2):55-62
The main characteristic features of spermiogenesis in Chilodus punctatus (Characiformes) are rotation of the nucleus, development of a nuclear fossa, which extends as a narrow invagination deep into the nucleus and the way in which flagellum is formed. The chromatin condensation proceeds during the spermiogenesis from heterogeneous through homogenous and granular to a highly compact one present in the mature spermatozoon. Mature Ch. punctatus spermatozoon shows a spherical nucleus, short midpiece and flagellum with lateral fins. The centrioles are in perpendicular arrangement and are located in the deep nuclear fossa, which extends towards the anterior pole of the nucleus. The midpiece contains a few mitochondria, which are separated from the anterior fragment of flagellum by the cytoplasmic channel. Spermiogenesis and spermatozoon ultrastructure conform to the pattern observed in other ostariophysans, but for the first time the presence of lateral fins along flagellum has been documented in a representative of Characiformes.  相似文献   

14.
The process of spermiogenesis and the structure of spermatozoa in the mite, Hafenrefferia gilvipes (Koch) were studied ultrastructurally. Spermiogenesis was divided into six stages. The spermatids at stage 1 have the usual structure. At stage 2 the structure of the mitochondria and their distribution in the spermatid start to change, leading to the formation of specific mitochondrial derivatives which are subsequently incorporated into the nucleus of the spermatozoon. Parallel to the transformation of mitochondria occurs a reorganization of the nuclear material. The fully formed spermatozoon has a tadpole-like shape, with the cell nucleus located in the distended part of the cell, and containing mitochondrial derivatives in its karyoplasm. Acrosome, flagellum and centrioles are absent. The participation of peripherally distributed microtubules, present in spermatids at stages 4 to 6, in the shaping of the spermatozoon has been suggested.  相似文献   

15.
Scanning and transmission electron microscopy were used to investigate the fine structure of sperm of the Mediterranean amberjack Seriola dumerilii. Each spermatozoon has an ovoid head which lacks an acrosome, a short, irregularly-shaped midpiece and a long flagellar tail. The midpiece houses eight spherical mitochondria, which are separated from the axoneme by the cytoplasmic canal. The centrioles are arranged approximately at right angles to each other. The proximal centriole lies inside, and the distal centriole outside, the nuclear fossa. The flagellum is inserted eccentrically into the head and is tangential to the nucleus, so that the spermatozoon is asymmetrical. It contains the conventional 9 + 2 axoneme, shows intratubular differentiations in the A microtubules of doublets 1, 2, 5 and 6, and possesses one pair of lateral fins. On the basis of its ultrastructural organization, the amberjack sperm resembles type II sperm as defined previously, except for the presence of the proximal centriole inside the nuclear fossa. This could result from a partial rotation of the nucleus during spermiogenesis.  相似文献   

16.
An ultrastructural study of spermatogenesis, spermiogenesis, and spermatozoa in Postorchigenes gymnesicus is presented. Cytoplasmic projections originating in nurse cells surround the spermatogonia, which are located at the periphery of the testes. Primary spermatocytes attached to a cytophore show synaptonemal complexes and a pair of centrioles. Spermiogenesis begins with the appearance of a cytoskeletal structure formed by an intercentriolar body and two perpendicular centrioles. An axoneme and a striated rootlet emerge from each centriole. The progressive rotation and fusion of both flagella with the median process occurs simultaneously with the migration of nucleus to the distal tip of the forming spermatozoon. The mature spermatozoon consists of three regions: (1) the nuclear region, containing the nucleus, one mitochondrion, two 9+1 axonemes, and cortical microtubules; (2) the intermitochondrial region, containing two axonemes; and (3) the mitochondrial region with another mitochondrion, two axonemes, cortical microtubules, and external ornamentation symmetrically and asymmetrically arranged coincidental with the cortical microtubules. Glycogen particles, absent in testicular cells, are abundant in the spermatozoon. Ultrastructural features of the non-nuclear region of the spermatozoon are specific for P. gymnesicus and are proposed to characterize the spermatozoon of digenean species. J. Morphol. 234:223–232, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Lundin  Kennet  Hendelberg  Jan 《Hydrobiologia》1998,383(1-3):197-205
Results from a transmission electron microscope study of the spermiogenesis and spermatozoon of Meara stichopi (Nemertodermatida, Platyhelminthes) indicate that the sperm type of the Nemertodermatida has evolved from the primitive metazoan sperm type rather than from an aberrant biflagellar sperm type as found in many other flatworms. The spirally coiled mitochondrial derivative in the mature spermatozoon develops from two large oval mitochondria in the early spermatid stages. A single flagellum grows out from a peripheral basal body adjacent to a perpendicularly placed accessory centriole. The basal body moves to a distal depression of the nucleus, and becomes equipped with an anchoring fibre apparatus. Most of the flagellum becomes axially incorporated into the developing spermatid. No trace of a second flagellum was found in any stage of the spermiogenesis. Rounded vesicles appear around the proximal, tapering end of the elongating nucleus. Most probably these vesicles form a thin acrosomal structure in the mature spermatozoon. No dense bodies, characteristic of many other ‘turbellarian’ flatworm sperm types, were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

19.
The spermatozoon of B. plicatilisis a thread–like cell with an anterior flagellar portion and a posterior cell body. The flagellum has a lateral ‘undulating membrane’, containing a folded longitudinal cisterna and an axoneme. The basal body of the axoneme is at the anterior tip. The axoneme lacks outer dynein arms and extends through the entire flagellar region and most of the cell body. The main portion of the flagellum and of the cell body contains a series of vesicles with tightly packed tubules that may serve as a cytoskeleton. The cell body contains a partly condensed nucleus, several mitochondria and some cytoplasm. Some elongated mitochondria are arranged in the postnuclear region. When the spermatozoon moves, the undulations propagate from the basal body at the flagellar tip. Late spermatids can be recognized by the nucleus and the flagellum being coiled and enclosed within a common cell membrane. As in other rotifers, there are cigar–like cell products (‘rods’) in the testes. The general organization of the cell, including the absence of an evident acrosome, resembles that of the other known monogonont sperm types.  相似文献   

20.
The ultrastructure of spermiogenesis and mature spermatozoon in Lytocestus indicus (Cestoda: Lytocestidae) is described; this is the first representative of this group of monozoic, presumably most basal, tapeworms (Eucestoda) from the Indomalayan region to be documented in this manner. Similarly, as in other caryophyllideans, its spermiogenesis involves the formation of a conical differentiation zone with 2 centrioles associated with striated roots and an intercentriolar body. In the course of the process, 1 of the centrioles develops a free flagellum, which fuses with a cytoplasmic protrusion, whereas the other remains oriented in a cytoplasmic bud. Spermiogenesis is also characterized by the presence of electron-dense material in the early stages of spermiogenesis and a slight rotation of the flagellar bud. The mature spermatozoon of L. indicus is a filiform cell tapered at both extremities that lacks mitochondria; its nucleus has parallel disposition to the axoneme and does not reach up to the posterior extremity of the spermatozoon, which is typical for spermatozoa of the type III pattern. The new data confirm that caryophyllideans share the same type of spermiogenesis that is considered to be plesiomorphic in the Eucestoda. The existing information on spermatological ultrastructure of 8 members for 3 of 4 caryophyllidean families from different host groups (cyprinids and catostomids, both Cypriniformes, and mochokids and clariids, both Siluriformes) from 4 zoogeographical regions (Palearctic, Neotropic, Ethiopian, and Indomalayan regions) demonstrates great uniformity in spermiogenesis and sperm ultrastructure, which does not reflect different taxonomic position of the species studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号