首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation measures often rely on habitat management, so knowledge about a species’ habitat use is a prerequisite for effective conservation planning. The Little Bustard Tetrax tetrax, a medium‐sized bird native to the Palaearctic steppes and today found in extensively farmed habitats, is a threatened species. Its population experienced a 94% decline in farmland habitats in France between 1982 and 1996, and populations all over Europe have suffered equally sharp declines. Due to this steep negative trend, this species has been the subject of a number of habitat selection studies in order to develop relevant conservation measures based on its habitat requirements. In this study, we investigated the habitat selection of a range of habitat types by both sexes and at two nested spatial scales: plot scale and landscape scale. In addition, we analysed intra‐specific social interactions by incorporating conspecific density in the statistical models of habitat use. The study was conducted on a very high‐density population, perhaps the highest ever recorded for this species at around 50 Bustards per 100 ha of suitable habitat. Our methodology combined two field approaches (point counts and quadrat counts). The findings showed rather limited sexual dimorphism in terms of habitat selection at a local scale, with only vegetation height differing between sexes at a micro‐habitat scale, no selection at landscape scale, and a prevailing role of social factors at both scales. The implications for future conservation strategies in relation to population density and landscape composition are discussed.  相似文献   

2.
The Little Bustard has undergone a steep reduction of its Western Palaearctic range over the last century. In the west of France, breeding populations declined by 96% from 1978 to 2008 in cultivated areas where grasslands have been converted into intensively managed annual crops. Little Bustard abundance and nest productivity have been monitored since 1995 in a 450‐km2 site in western France. We assessed the proximate causes of the decline of Little Bustards in French farming landscapes and quantified the effectiveness of conservation measures that aimed to reverse the decline. The decline of Little Bustard, from about 65 males in 1995 to just six males in 2003, could be related to a near absence of recruitment over this period. Since 2004, the establishment of more than 1300 ha of specifically targeted agri‐environment schemes (AES) in the study site has led to a sharp increase in female productivity, mainly associated with nesting in AES fields. By imposing constraints on mowing dates, AES have prevented nest destruction and female mortality during mowing and, by increasing plant species diversity, provided chicks with a higher abundance of grasshoppers. This has contributed to reversing the trend, and increasing the population to around 30 males in 2009. Conservation strategies involving specifically targeted AES based on the identification of limiting factors can help to reverse the decline of threatened species.  相似文献   

3.
Climate and land‐use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land‐use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high‐resolution climate (measured as temperature and precipitation) and land‐use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land‐use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects.  相似文献   

4.
5.
There is a pressing need to understand how changing climate interacts with land‐use change to affect predator–prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food‐storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food‐store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High‐quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex‐specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex‐specific foraging strategies and energy requirements. Long‐term temporal stability in local vole abundance refutes the hypothesis of climate‐driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability.  相似文献   

6.
Quantifying changes in stocks of C, N, P, and S in agricultural soils is important not only for managing these soils sustainably as required to feed a growing human population, but for C and N, they are also important for understanding fluxes of greenhouse gases from the soil environment. In a global meta‐analysis, 102 studies were examined to investigate changes in soil stocks of organic C, total N, total P, and total S associated with long‐term land‐use changes. Conversion of native vegetation to cropping resulted in substantial losses of C (?1.6 kg m?2, ?43%), N (?0.15 kg m?2, ?42%), P (?0.029 kg m?2, ?27%), and S (?0.015 kg m?2, ?33%). The subsequent conversion of conventional cropping systems to no‐till, organic agriculture, or organic amendment systems subsequently increased stocks, but the magnitude of this increase (average of +0.47 kg m?2 for C and +0.051 kg m?2 for N) was small relative to the initial decrease. We also examined the conversion of native vegetation to pasture, with changes in C (?11%), N (+4.1%), and P (+25%) generally being modest relative to changes caused by conversion to cropping. The C:N ratio remained relatively constant irrespective of changes in land use, whilst in contrast, the C:S ratio decreased by 21% in soils converted to cropping – this suggesting that biochemical mineralization is of importance for S. The data presented here will assist in the assessment of different agricultural production systems on soil stocks of C, N, P, and S – this information assisting not only in quantifying the effects of existing agricultural production on these stocks, but also allowing for informed decision‐making regarding the potential effects of future land‐use changes.  相似文献   

7.
Climate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta‐analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land‐uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response.  相似文献   

8.
Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land‐use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced‐impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out‐of‐sample R2 values >90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks.  相似文献   

9.
Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro‐ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37‐year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time‐series analysis provided strong evidence explaining long‐term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro‐ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.  相似文献   

10.
There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study, we analyzed satellite‐derived estimates of monthly LAI across forested coastal catchments of southwest Western Australia over a 12 year period (2000–2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite‐derived LAI values was linearly related to mean annual rainfall. However, interannual changes to LAI in response to changes in annual rainfall were far less than expected from the long‐term LAI‐rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long‐term decline in areal average underground water storage and diminished summer flows, with an emerging trend toward more ephemeral flow regimes.  相似文献   

11.
South America spans about 44° latitude, covers almost 18 million km2, and is second only to Africa in continental mammal species richness. In spite of this richness, research on the status of this fauna and on the nature and magnitude of contemporary threats remains limited. Distilling threats to this diverse fauna at a continental scale is challenging, in part because of the limited availability of rigorous studies. Recognizing this constraint, we summarize key threats to small mammals in South America, emphasizing the roles of habitat loss and degradation, direct persecution, and the increasing threat of climate change. We focus on three regional ‘case studies’: the tropical Andes, Amazonia and adjacent lowland regions, and the southern temperate region. We close with a brief summary of recent findings at our long‐term research site in north‐central Chile as they pertain to projected threats to this fauna. Habitat alteration is a pervasive threat that has been magnified by market forces and globalization (e.g. extensive agricultural development in Amazonia), and threatens increasing numbers of populations and species. Climate change poses even greater threats, from changes in rainfall and runoff regimes and resulting changes in vegetative structure and composition to secondary influences on fire dynamics. It is likely that many changes have yet to be recognized, but existing threats suggest that the future may bring dramatic changes in the distribution of many mammal taxa, although it is not clear if key habitat elements (vegetation) will respond as rapidly as climatic factors, leading to substantial uncertainty. Climate change is likely to result in ‘winners’ and ‘losers’ but available information precludes detailed assessment of which species are likely to fall into which category. In the absence of long‐term monitoring and applied research to characterize these threats more accurately, and to develop strategies to reduce their impacts, managers already are being faced with daunting challenges. As the line between ‘pure’ and ‘applied’ research blurs in the face of converging interests of scientists and society we hope that solutions to these critical issues will be incorporated in addressing anticipated conservation crises.  相似文献   

12.
Rapid temperature and precipitation changes in High Arctic tundra ecosystems are altering the biogeochemical cycles of carbon (C) and nitrogen (N), but in ways that are difficult to predict. The challenge grows from the uncertainty of N cycle responses and the extent to which shifts in soil N are coupled with the C cycle and productivity of tundra systems. We used a long‐term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland, and applied a combination of discrete sampling and in situ soil core incubations to measure C and N pools and seasonal microbial processes that might control plant‐available N. We hypothesized that elevated temperature and increased precipitation would stimulate microbial activity and net inorganic N mineralization, thereby increasing plant N‐availability through the growing season. While we did find increased N mineralization rates under both global change scenarios, water addition also significantly increased net nitrification rates, loss of NO3?‐N via leaching, and lowered rates of labile organic N production. We also expected the chronic warming and watering would lead to long‐term changes in soil N‐cycling that would be reflected in soil δ15N values. We found that soil δ15N decreased under the different climate change scenarios. Our results suggest that temperature accelerates biological processes and existing C and N transformations, but moisture increases soil hydraulic connectivity and so alters the pathways, and changes the fate of the products of C and N transformations. In addition, our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these landscapes in part leading to greater C sequestration, but simultaneously, N losses from the upper soil profile that may be transported to depth dissolved in water and or transported off site in lateral flow.  相似文献   

13.
Quaternary climatic oscillations appear to have influenced the genetic diversity and evolutionary history of arid‐adapted plants. To understand the processes involved and reveal evolutionary relationships, haplotypes were examined from Calligonum roborovskii, an endemic species occurring in the arid zones across the desert regions of north‐western China, and seven other species also from Calligonum section Medusa, including C. gobicum, C. mongolicum and the narrow endemic species C. ebi‐nuricum, C. pumilum, C. taklimakanense, C. trifarium and C. yengisaricum. Forty‐three haplotypes were identified in 422 individuals from 51 natural populations, from variation of two plastid DNA intergenic spacers (rpl32trnL and ycf6psbM). A high level of total genetic diversity was found across species for which more than two populations were examined, including C. gobicum, C. mongolicum, C. pumilum and C. roborovskii. A distinct isolation‐by‐distance pattern in each of these species was suggested by the Mantel test, indicating that restricted gene flow caused high genetic differentiation among populations. Three haplotypes were shared by two or three species each, but the other 40 haplotypes were species‐specific. The 43 haplotypes split into three major clades, but not species‐specific lineages; most of the Calligonum species were not reciprocally monophyletic, probably due to incomplete lineage sorting or introgression. The identified haplotypes were dated to 1.97 Mya (95% highest posterior density: 2.95–0.99 Mya) and diverged until the late Pleistocene, possibly linked to aridification and enlargement of deserts caused by climate changes. Variation of desert habitats during the Pleistocene might play a key role in causing the divergence.  相似文献   

14.
Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land use. To address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N), and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was as follows: biodiversity>grazing>precipitation>N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is as follows: precipitation>grazing>temperature>biodiversity>N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global‐change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers.  相似文献   

15.
The dispersal capabilities of intertidal organisms may represent a key factor to their survival in the face of global warming, as species that cannot adapt to the various effects of climate change will have to migrate to track suitable habitat. Although species with pelagic larval phases might be expected to have a greater capacity for dispersal than those with benthic larvae, interspecies comparisons have shown that this is not always the case. Consequently, population genetic approaches are being increasingly used to gain insights into dispersal through studying patterns of gene flow. In the present study, we used nuclear single‐nucleotide polymorphisms (SNPs) and mitochondrial DNA (mtDNA) sequencing to elucidate fine‐scale patterns of genetic variation between populations of the Black Katy Chiton, Katharina tunicata, separated by 15–150 km in south‐west Vancouver Island. Both the nuclear and mitochondrial data sets revealed no genetic differentiation between the populations studied, and an isolation‐with‐migration analysis indicated extensive local‐scale gene flow, suggesting an absence of barriers to dispersal. Population demographic analysis also revealed long‐term population stability through previous periods of climate change associated with the Pleistocene glaciations. Together, the findings of the present study suggest that this high potential for dispersal may allow K. tunicata to respond to current global warming by tracking suitable habitat, consistent with its long‐term demographic stability through previous changes in the Earth's climate. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 589–597.  相似文献   

16.
Although climate change is predicted to place mountain‐top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai‘i, but is a highly charismatic giant rosette plant that is viewed by 1–2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population‐wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management, this iconic species has entered a period of substantial climate‐associated decline. Mortality has been highest at the lower end of the distributional range, where most silverswords occur, and the strong association of annual population growth rates with patterns of precipitation suggests an increasing frequency of lethal water stress. Local climate data confirm trends toward warmer and drier conditions on the mountain, and signify a bleak outlook for silverswords if these trends continue. The silversword example foreshadows trouble for diversity in other biological hotspots, and illustrates how even well‐protected and relatively abundant species may succumb to climate‐induced stresses.  相似文献   

17.
Ecological theory predicts that habitat growth and loss will have different effects on community structure, even if they produce patches of the same size. Despite this, studies on the effects of patchiness are often performed without prior knowledge of the processes responsible for the patchiness. We manipulated artificial seagrass habitat in temperate Australia to test whether fish and crustacean assemblages differed between habitats that formed via habitat loss and habitat growth. Habitat loss treatments (originally 16 m2) and habitat growth treatments (originally 0 m2) were manipulated over 1 week until each reached a final patch size of 4 m2. At this size, each was compared through time (0–14 days after manipulation) with control patches (4 m2 throughout the experiment). Assemblages differed significantly among treatments at 0 and 1 day after manipulation, with differences between growth and loss treatments contributing to most of the dissimilarity. Immediately after the final manipulation, total abundance in habitat loss treatments was 46% and 62% higher than controls and habitat growth treatments, respectively, which suggests that animals crowded into patches after habitat loss. In contrast to terrestrial systems, crowding effects were brief (≤1 day), signifying high connectivity in marine systems. Growth treatments were no different to controls, despite the lower probability of animals encountering patches during the growth phase. Our study shows that habitat growth and loss can cause short‐term differences in animal abundance and assemblage structure, even if they produce patches of the same size.  相似文献   

18.
Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra‐annual rainfall had become more variable over time. Using long‐term live‐trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires.  相似文献   

19.
Roost site selection is a state‐dependent process, affected by the individual's costs and benefits of roosting at a specific site in the available environment. Costs and benefits of different roost sites vary in relation to intrinsic factors and environmental conditions. Thus, the cost–benefit functions of roost sites are expected to differ between seasons and life‐history stages, resulting in adjustments in roost site selection. Studying roost site selection throughout the year therefore provides information about year‐round habitat requirements at different life‐history stages. However, little is known about the roosting behaviour of birds. Here, the roost site selection of Little Owls Athene noctua was studied by repeated daytime location of 24 adult and 75 juvenile radiotagged individuals from July to November. Little Owls preferred sheltered roost sites such as tree cavities with multiple entrances. They increasingly used sheltered sites from summer to winter and preferentially used sheltered roost sites with low ambient temperatures. Juveniles used significantly less sheltered sites during dispersal than before and afterwards, and used less sheltered sites than adults within their home‐range. The survival probability of birds roosting frequently at exposed sites was reduced. Roost site selection is probably driven by the two mechanisms of predator avoidance and thermoregulation, and the costs of natal dispersal may include increased predation threat and higher energy expenditure for thermoregulation. We suggest that adequate roost sites, such as multi‐entrance tree cavities, are an important habitat requirement for Little Owls and that habitat quality can be affected by manipulating their availability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号