首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
The disjunct distributions of the Lusitanian flora, which are found only in south‐west Ireland and northern Iberia, and are generally absent from intervening regions, have been of great interest to biogeographers. There has been much debate as to whether Irish populations represent relicts that survived the Last Glacial Maximum (LGM; approximately 21 kya), or whether they recolonized from southern refugia subsequent to the retreat of the ice and, if so, whether this occurred directly (i.e. the result of long distance dispersal) or successively (i.e. in the manner of a ‘steeplechase’, with the English Channel and Irish Sea representing successive ‘water‐jumps’ that have to be successfully crossed). In the present study, we used a combined palaeodistribution modelling and phylogeographical approach to determine the glacial history of the Irish spurge, Euphorbia hyberna, the sole member of the Lusitanian flora that is also considered to occur naturally in south‐western England. Our findings suggest that the species persisted through the LGM in several southern refugia, and that northern populations are the result of successive recolonization of Britain and Ireland during the postglacial Littletonian warm stage, akin to the ‘steeplechase’ hypothesis. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 249–259.  相似文献   

2.
There is now considerable evidence for the survival of temperate species within glacial refugia that were situated at relatively high latitudes, notably the Carpathian Basin and Dordogne region in Europe. However, the prevalence of fossil remains in such locations is rarely matched by molecular evidence for their contribution to subsequent geographical and demographic expansion of the species in question. One obstacle to this has been insufficient analysis of modern samples from the relevant areas, in particular the parts of eastern Europe that surround the Carpathian refugium. In the present study, we examine the patterns of variation in mitochondrial DNA of the common vole (Microtus arvalis), obtained from existing museum specimens and from newly‐collected samples obtained in this area. We show that common voles from one of six extant mitochondrial DNA lineages have colonized most of the species' range in eastern Europe. We contend that the post‐glacial dispersal of this lineage most likely originated from the Carpathian refugium, adding support to the argument that such northern refugia made an important contribution to existing genetic diversity in Europe. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

3.
4.
Frequently, Pleistocene climatic cycling has been found to be the diver of genetic structuring in populations, even in areas that did not have continental ice sheets, such as on the Qinghai‐Tibetan Plateau (QTP). Typically, species distributed on the plateau have been hypothesized to re‐treat to south‐eastern refugia, especially during the Last Glacial Maximum (LGM). We evaluated sequence variation in the mitochondrial DNA gene Cytb and the nuclear DNA gene RAG‐1 in Rana kukunoris, a species endemic to the QTP. Two major lineages, N and S, were identified, and lineage N was further subdivided into N1 and N2. The geographical distribution and genealogical divergences supported the hypothesis of multiple refugia. However, major lineages and sublineages diverged prior to the LGM. Demographical expansion was detected only in lineage S and sublineage N2. Sublineage N1 might have survived several glacial cycles in situ and did not expand after the LGM because of the absence of suitable habitat; it survived in river islands. Genetic analysis and environment modelling suggested that the north‐eastern edge of QTP contained a major refugium for R. kukunoris. From here, lineage S dispersed southwards after the LGM. Two microrefugia in northern Qilian Mountains greatly contributed to current level of intraspecific genetic diversity. These results were found to have important implications for the habitat conservation in Northwest China.  相似文献   

5.
Aim Ascophyllum nodosum (L.) Le Jolis is a dominant fucoid seaweed occurring along sheltered, rocky shores throughout the North Atlantic (but not in the Pacific), where it is a foundational species of the intertidal community. Its large size and vulnerability to ice‐scour have led to the hypothesis that contemporary populations in the north‐west Atlantic may be the result of de novo recolonization from the north‐east Atlantic since the Last Glacial Maximum (LGM) (c. 20 ka). We tested this hypothesis. Location Temperate North Atlantic rocky intertidal between c. 42 and 65° N latitude. Methods More than 1300 individuals from 28 populations were sampled from across the entire range of A. nodosum and genotyped for six microsatellite loci, and > 500 individuals were genotyped for two mitochondrial loci, an intergenic spacer (IGS) and the tRNA (W) gene (trnW). Population structure and historical demography were analysed in a standard population genetics and coalescence framework. Results Based on the presence of private alleles and haplotypes, we found that A. nodosum has survived on both sides of the Atlantic (since before the LGM, dating back to at least the penultimate Eemian interglacial) with similar effective population sizes and divergence times (1.2 and 0.8 Ma). Dispersal has been predominantly from Europe to North America, and there is very weak present‐day population differentiation across the North Atlantic. Diversity measures provided additional support for determining the location of refugia. Main conclusions Ascophyllum nodosum was apparently little affected by the LGM, although contemporary climate change is likely to have major effects on its latitudinal distribution on both sides of the North Atlantic. It is a very long‐lived species, analogous in virtually all demographic aspects to a tree – resistant to extinction but vulnerable to catastrophic events. The Brittany peninsula is a hotspot of genetic diversity worthy of conservation.  相似文献   

6.
7.
Aim We examined the phylogeography of the cold‐temperate macroalgal species Fucus distichus L., a key foundation species in rocky intertidal shores and the only Fucus species to occur naturally in both the North Pacific and the North Atlantic. Location North Pacific and North Atlantic oceans (42° to 77° N). Methods We genotyped individuals from 23 populations for a mitochondrial DNA (mtDNA) intergenic spacer (IGS) (n = 608) and the cytochrome c oxidase subunit I (COI) region (n = 276), as well as for six nuclear microsatellite loci (n = 592). Phylogeographic structure and connectivity were assessed using population genetic and phylogenetic network analyses. Results IGS mtDNA haplotype diversity was highest in the North Pacific, and divergence between Pacific haplotypes was much older than that of the single cluster of Atlantic haplotypes. Two ancestral Pacific IGS/COI clusters led to a widespread Atlantic cluster. High mtDNA and microsatellite diversities were observed in Prince William Sound, Alaska, 11 years after severe disturbance by the 1989 Exxon Valdez oil spill. Main conclusions At least two colonizations occurred from the older North Pacific populations to the North Atlantic between the opening of the Bering Strait and the onset of the Last Glacial Maximum. One colonization event was from the Japanese Archipelago/eastern Aleutians, and a second was from the Alaskan mainland around the Gulf of Alaska. Japanese populations probably arose from a single recolonization event from the eastern Aleutian Islands before the North Pacific–North Atlantic colonization. In the North Atlantic, the Last Glacial Maximum forced the species into at least two known glacial refugia: the Nova Scotia/Newfoundland (Canada) region and Andøya (northern Norway). The presence of two private haplotypes in the central Atlantic suggests the possibility of colonization from other refugia that are now too warm to support F. distichus. With the continuing decline in Arctic ice cover as a result of global climate change, renewed contact between North Pacific and North Atlantic populations of Fucus species is expected.  相似文献   

8.
Aim To analyse patterns of nuclear and mitochondrial genetic variation in the European chub, Squalius cephalus (Linnaeus, 1758), in order to understand the evolutionary history of this species and to test biogeographical hypotheses for the existence of co‐distributed European freshwater fish species. Location Rivers in Europe (Finland, Poland, Czech Republic, France, Bulgaria, Spain, Italy). Methods We genotyped 12 polymorphic microsatellite markers derived from 310 individuals collected from across the distribution of S. cephalus in Europe (including a total of 15 populations) and sequenced mitochondrial DNA (mtDNA) from a subset of 75 individuals. Sequences of mtDNA cytochrome b were analysed using both phylogenetic (median‐joining networks) and population genetic methods (tests for demographic history, mismatch distributions, Bayesian coalescent analysis). Geographical structure in microsatellite loci was examined using a distance method (FST), factorial correspondence analysis (FCA) and a Bayesian clustering method (structure ). Results The mtDNA network showed a clear split into four different haplogroup lineages: Western (separated into Atlantic and Danubian sublineages), Eastern, Aegean (occurring in two distinct sublineages in the Balkans and in Spain) and Adriatic. Our results indicate recent population expansion in the Eastern and Western Atlantic lineages and the admixture of two previously separate sublineages (Atlantic and Danubian) in the Western lineage. Bayesian structure analysis as well as FCA results roughly corresponded to the mtDNA‐based structure, separating the sampled individuals into almost non‐overlapping groups. Main conclusions Our results support hypotheses suggesting origins of extant lineages of freshwater fishes in multiple refugia and the subsequent post‐glacial colonization of Europe via different routes. We confirmed the previously proposed two‐step expansion scenario from the Danube refuge, the existence of a secondary (Atlantic) refuge during the last glaciation (probably in the Rhone River) and population expansion of this lineage. Conspicuous divergences among Mediterranean populations reflect their different origin, as well as their low contribution to the recent genetic pool of chub in central Europe.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号