首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endosomes are transportation nodes, mediating selective transport of soluble and transmembrane cargos to and from the Golgi apparatus, plasma membrane and lysosomes. As endosomes mature to become multivesicular bodies (MVBs), Endosomal Sorting Complexes Required for Transport (ESCRTs) selectively incorporate transmembrane cargos into vesicles that bud into the endosome lumen. Luminal vesicles and their cargoes are targeted for destruction when MVBs fuse with lysosomes. Common assays of endosomal luminal targeting, including fluorescence microscopy and monitoring of proteolytic cargo maturation, possess significant limitations. We present a quantitative assay system called LUCID (LUCiferase reporter of Intraluminal Deposition) that monitors exposure of chimeric luciferase‐cargo reporters to cytosol. Luciferase‐chimera signal increases when sorting to the endosome lumen is disrupted, and silencing of signal from the chimera depends upon luminal delivery of the reporter rather than proteolytic degradation. The system presents several advantages, including rapidity, microscale operation and a high degree of reproducibility that enables detection of subtle phenotypic differences. Luciferase reporters provide linear signal over an extremely broad dynamic range, allowing analysis of reporter traffic even at anemic levels of expression. Furthermore, LUCID reports transport kinetics when applied to inducible trafficking reporters.   相似文献   

2.
The STAM family proteins, STAM1 and STAM2/EAST/Hbp, are phosphotyrosine proteins that contain SH3 domains and ubiquitin-interacting motifs. Their yeast homologue, Hse1, and its binding protein, Vps27, are involved in the vacuolar membrane transport machinery. Here we show that STAM1 and STAM2 are localized to the endosomal membrane. Some of these complexes contain Eps15, an endocytic protein, which accumulates in clumps upon expression of a dominant-negative form of Vps4-A, an AAA-type ATPase, that is required for normal endosome function. These results support the idea that the STAMs are mammalian vacuolar protein sorting (Vps) proteins. We also demonstrate that ligand-mediated epidermal growth factor receptor (EGFR) degradation is partially but not completely impaired in both Hrs(-/-) and STAM1(-/-)STAM2(-/-) mouse embryonic fibroblasts. Furthermore, endosome swelling is seen in both Hrs(-/-) and STAM1(-/-)STAM2(-/-) cells. These results suggest that the STAMs and Hrs play important roles in the mammalian endosomal/vacuolar protein sorting pathway.  相似文献   

3.
Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)-α causes receptor recycling. TGF-α therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-α, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking.
We have compared the effect of six different ligands on endocytic trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-α and epiregulin lead to complete receptor recycling. EGF leads to lysosomal degradation of the majority but not all EGFRs. Amphiregulin does not target EGFR for lysosomal degradation but causes fast as well as slow EGFR recycling. The Cbl ubiquitin ligases, especially c-Cbl, are responsible for EGFR ubiquitination after stimulation with all ligands, and persistent EGFR phosphorylation and ubiquitination largely correlate with receptor degradation.  相似文献   

4.
Phosphatidylinositol 3‐phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain‐containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid‐phase marker dextran were retained in abnormally small endosomes in Phafin2‐depleted cells. In yeast two‐hybrid analysis we identified Phafin2 as a novel interactor of the endosomal‐tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid‐phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.  相似文献   

5.
雌激素受体及其信号通路在乳腺癌的发生发展中发挥着关键作用。到目前为止,抑制或阻断雌激素信号通路的内分泌治疗尤其是他莫西芬,仍是对雌激素受体阳性乳腺癌患者最有效的治疗手段之一。然而,他莫西芬的耐药问题直接影响了乳腺癌患者的治疗及预后。最近多项研究表明雌激素受体与表皮生长因子受体家族尤其是HER2介导的信号传导通路在多个点上相互交叉,彼此影响,与他莫西芬的耐药密切相关  相似文献   

6.
雌激素受体(ER)在乳腺癌的发生和发展中起重要作用,抗雌激素治疗的内分泌治疗为重要的治疗方案,但易产生三苯氧胺(TAM)的耐药性而使治疗失效,原因之一可能是由于表皮生长因子受体(EGFR)和HER-2高表达引起ER磷酸化所致。本文概述了其中的分子机制和可能涉及的传导通路等。  相似文献   

7.
8.
The biogenesis of multivesicular endosomes and the sorting of activated signaling receptors into multivesicular endosomes depend on soluble protein complexes (ESCRT complexes), which transiently interact with the receptor cargo and the endosomal membrane. Previously, it was shown that the transmembrane protein secretory carrier membrane protein (SCAMP) 3, which is present on endosomes, interacts with ESCRT components. Here, we report that SCAMP3 plays a role in the biogenesis of multivesicular endosomes. We find that SCAMP3 plays a role in EGF receptor sorting into multivesicular endosomes and in the formation of intralumenal vesicles within these endosomes in vitro and thus also controls EGF receptor targeting to lysosomes. We also find that SCAMP3 regulates the EGF-dependent biogenesis of multivesicular endosomes. We conclude that the transmembrane protein SCAMP3 has a positive role in sorting into and budding of intralumenal vesicles and thereby controls the process of multivesicular endosome biogenesis.  相似文献   

9.
The EGF receptor can bind seven different agonist ligands. Although each agonist appears to stimulate the same suite of downstream signaling proteins, different agonists are capable of inducing distinct responses in the same cell. To determine the basis for these differences, we used luciferase fragment complementation imaging to monitor the recruitment of Cbl, CrkL, Gab1, Grb2, PI3K, p52 Shc, p66 Shc, and Shp2 to the EGF receptor when stimulated by the seven EGF receptor ligands. Recruitment of all eight proteins was rapid, dose-dependent, and inhibited by erlotinib and lapatinib, although to differing extents. Comparison of the time course of recruitment of the eight proteins in response to a fixed concentration of each growth factor revealed differences among the growth factors that could contribute to their differing biological effects. Principal component analysis of the resulting data set confirmed that the recruitment of these proteins differed between agonists and also between different doses of the same agonist. Ensemble clustering of the overall response to the different growth factors suggests that these EGF receptor ligands fall into two major groups as follows: (i) EGF, amphiregulin, and EPR; and (ii) betacellulin, TGFα, and epigen. Heparin-binding EGF is distantly related to both clusters. Our data identify differences in network utilization by different EGF receptor agonists and highlight the need to characterize network interactions under conditions other than high dose EGF.  相似文献   

10.
Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)‐positive sorting endosomes that promotes the efficient recycling of low‐density lipoprotein receptor‐related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1‐positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17‐binding domain, we generated chimeric proteins in which the SNX17‐binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non‐polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin‐Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17‐binding receptors and the restricted function of SNX17 in the BSE .   相似文献   

11.
二聚化:受体酪氨酸激酶活化的重要机制   总被引:1,自引:0,他引:1  
受体酪氨酸激酶家族是一类具有内源性蛋白酪氨酸激酶活性的生长因子受体。它们具有相似的分子结构 ,其配体介导的受体活化主要是通过二聚化的机制来实现的。配体介导同源或异源的受体二聚化 ,不同的配体以不同的机制介导受体的二聚化。本文介绍了受体酪氨酸激酶家族不同亚类受体在其配体介导下二聚化的机制 ,并着重介绍了表皮生长因子受体家族各成员间的异二聚化及其引起的胞内信号转导途径的多样化  相似文献   

12.
Multivesicular endosomes/bodies (MVBs) contain intraluminal vesicles (ILVs) that bud away from the cytoplasm. Multiple mechanisms of ILV formation have been identified, but the relationship between different populations of ILVs and MVBs remains unclear. Here, we show in HeLa cells that different ILV subpopulations can be distinguished by size. EGF stimulation promotes the formation of large ESCRT‐dependent ILVs, whereas depletion of the ESCRT‐0 component, Hrs, promotes the formation of a uniformly sized population of small ILVs, the formation of which requires CD63. CD63 has previously been implicated in ESCRT‐independent sorting of PMEL in MVBs and transfected PMEL is present on the small ILVs that form on Hrs depletion. Upregulation of CD63‐dependent ILV formation by Hrs depletion indicates that Hrs and CD63 regulate competing machineries required for the generation of distinct ILV subpopulations. Taken together our results indicate that ILV size is influenced by their cargo and mechanism of formation and suggest a competitive relationship between ESCRT‐dependent and ‐independent mechanisms of ILV formation within single MVBs.   相似文献   

13.
以PCR方法从克隆的EGFR胞外区cDNA中扩增编码EGFR-L2结构域的DNA片段,在其3′端加入编码His6标签的序列,与pET-3c连接构建EGFR-L2原核表达载体。该蛋白在大肠杆菌BL21(DE3)中获得高效表达,免疫印迹分析表明表达产物全部以包涵体形式存在,分步透析法和稀释法都不能获得可溶性复性产物,而Ni2+-NTA柱上复性法不仅能够获得可溶性的EGFR-L2蛋白,而且产物同时得到高度纯化,纯度>95%,复性的EGFR-L2与其配基EGF具有特异性的结合活性,但亲和力较低。这表明His6标签不但便于纯化目标蛋白,而且可利用Ni2+-NTA柱进行柱上复性,适用于不易通过常规方法复性的重组蛋白的制备。  相似文献   

14.
Endocytosis of signaling receptors, such as epidermal growth factor receptor (EGFR), tightly controls the signal transduction process triggered by ligand activation of these receptors. To identify new regulators of the endocytic trafficking of EGFR an RNA interference screen was performed for genes involved in ubiquitin conjugation and down-regulation of EGFR. The screen revealed that small interfering RNAs (siRNAs) that target the conserved ubiquitin-binding domain Uev1 increased down-regulation of EGFR. Since these siRNAs simultaneously targeted multiple genes containing a Uev1 domain, we analyzed the role of these gene products by overexpressing individual Uev1-related proteins. This analysis revealed that overexpression of Uev1A (UBE2V1) has no effect on the degradation of EGFR:EGF complexes. In contrast, overexpression of Uev1B (TMEM189-UBE2V1 isoform 2) slowed the degradation of EGF:receptor complexes. The Uev1B protein was found to strongly colocalize and associate with ubiquitin and Hrs in endosomes. Moreover, overexpression of Uev1B abrogated the ability of Hrs to colocalize with EGFR. The B-domain of Uev1B, and not the UEV-domain, was mainly responsible for the observed phenotypes suggesting the presence of a novel endosomal targeting sequence within the B-domain. Together, the data show that elevated levels of Uev1B protein in cells lead to decreased efficiency of endosomal sorting by associating with ubiquitinated proteins and Hrs.  相似文献   

15.
The sequential action of five distinct endosomal‐sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT‐III is a highly ordered process. We show that the length of ESCRT‐III (Snf7) oligomers controls the size of MVB vesicles and addresses how ESCRT‐II regulates ESCRT‐III assembly. The first step of ESCRT‐III assembly is mediated by Vps20, which nucleates Snf7/Vps32 oligomerization, and serves as the link to ESCRT‐II. The ESCRT‐II subunit Vps25 induces an essential conformational switch that converts inactive monomeric Vps20 into the active nucleator for Snf7 oligomerization. Each ESCRT‐II complex contains two Vps25 molecules (arms) that generate a characteristic Y‐shaped structure. Mutant ‘one‐armed’ ESCRT‐II complexes with a single Vps25 arm are sufficient to nucleate Snf7 oligomerization. However, these oligomers cannot execute ESCRT‐III function. Both Vps25 arms provide essential geometry for the assembly of a functional ESCRT‐III complex. We propose that ESCRT‐II serves as a scaffold that nucleates the assembly of two Snf7 oligomers, which together are required for cargo sequestration and vesicle formation during MVB sorting.  相似文献   

16.
17.
The epidermal growth factor receptor (EGFr) status and the vimentin (V) status of malignant cells in pleural fluids from patients with breast cancer were determined using an immunoperoxidase labelling technique. the results were correlated with the oestrogen receptor (ER) and the progesterone receptor (PR) status of the primary tumour and with disease-free survival time of the patient. A negative correlation between EGFr and V status and hormone receptor status was found. the longest mean survival time occurred in patients with negative EGFr and V status and positive hormone receptor (ER and PR) status. the shortest mean survival time occurred in patients with positive EGFr and V and negative ER and PR status. Le récepteur du facteur de croissance de l'epiderme (EGFr) et la vimentine (V) ont étéétudiées par une technique d'immunopéroxydase, au niveau des cellules malignes des épanchements pleuraux de malades traités pour cancer du sein. Les résultats ont été corrélés avec les récepteurs d'oestrogènes (ER) et de progestérone (PR) et avec la durée de survie sans récidive. Une corrélation négative est trouvée entre le récepteur de l'EGF, la vimentine et le taux des récepteur hormonaux. La survie moyenne la plus longue est observée chez des patientes négatives pour le récepteur de l'EGF et pour la vimentine et positives pour les récepteurs hormonaux (ER et PR). La plus courte survie est associée a la positivité du récepteur de l'EGF et de la vimentine et à la négativité de ER et PR. In Pleuraergüssen von Patientinnen mit Mammakarzinom wurden der Rezeptor für den epidermalen Wachstums-faktor (EGF) sowie Vimentin mit der Immunperoxydase- Technik untersucht. Die Ergebnisse wurden mit dem Vorliegen von Östrogen- und Progesteronrezeptoren im Tumor sowie dem rezidivfreien Intervall der Patientinnen korreliert. Eine negative Korrelation bestand zwischen EGF-Rezeptor und Vimentin. Die längste durchschnittliche Überlebenszeit wurde dagegen bei Patientinnen mit negativem Ergebnis für den EGF-Rezeptor und Vimentin jedoch positiven Hormonrezeptoren gefunden. Die kürzeste überlebenszeit lag bei Patientinnen mit positivem Rezeptor- und Vimentinnachweis und Fehlen der Hormonrezeptoren vor.  相似文献   

18.
Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal‐regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin‐induced increase in the phosphatidylinositol‐3,4,5‐triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin‐induced amplification of mitogenic signaling is abolished by disrupting PIP3‐mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non‐linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues.  相似文献   

19.
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the channel, as it is blocked by treatment with the tyrosine kinase inhibitor erbstatin, or by mutation of the tyrosine at channel amino acid position 479 to phenylalanine. Previous work has shown that there is a large increase in the tyrosine phosphorylation of Kv1.3 when it is coexpressed with the EGFr. Pretreatment of EGFr and Kv1.3 cotransfected cells with EGF before patch recording also results in a decrease in peak Kv1.3 current. Furthermore, pretreatment of cotransfected cells with an antibody to the EGFr ligand binding domain (α-EGFr), which blocks receptor dimerization and tyrosine kinase activation, blocks the EGFr-mediated suppression of Kv1.3 current. Insulin treatment during patch recording also causes an inhibition of Kv1.3 current after tens of minutes, while pretreatment for 18 h produces almost total suppression of current. In addition to depressing peak Kv1.3 current, EGF treatment produces a speeding of C-type inactivation, while pretreatment with the α-EGFr slows C-type inactivation. In contrast, insulin does not influence C-type inactivation kinetics. Mutational analysis indicates that the EGF-induced modulation of the inactivation rate occurs by a mechanism different from that of the EGF-induced decrease in peak current. Thus, receptor tyrosine kinases differentially modulate the current magnitude and kinetics of a voltage-dependent potassium channel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号