首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemolithotrophic micro‐organisms are important primary producers in high‐temperature geothermal environments and may catalyse a number of different energetically favourable redox reactions as a primary energy source. Analysis of geochemical constituents followed by chemical speciation and subsequent calculation of reaction free energies (ΔGrxn) is a useful tool for evaluating the thermodynamic favourability and potential energy available for microbial metabolism. The primary goal of this study was to examine relationships among geochemical gradients and microbial population distribution, and to evaluate the utility of energetic approaches for predicting microbial metabolism from free‐energy calculations, utilizing as examples, several geothermal habitats in Yellowstone National Park where thorough geochemical and phylogenetic analyses have been performed. Acidic (pH ~ 3) and near‐neutral (pH ~ 6–7) geothermal springs were chosen for their range in geochemical properties. Aqueous and solid phase samples obtained from the source pools and the outflow channels of each spring were characterized for all major chemical constituents using laboratory and field methods to accurately measure the concentrations of predominant oxidized and reduced species. Reaction free energies (ΔGrxn) for 33 oxidation–reduction reactions potentially important to chemolithotrophic micro‐organisms were calculated at relevant spring temperatures after calculating ion activities using an aqueous equilibrium model. Free‐energy values exhibit significant variation among sites for reactions with pH dependence. For example, free‐energy values for reactions involving Fe3+ are especially variable across sites due in large part to the pH dependence of Fe3+ activity, and exhibit changes of up to 40 kJ mol?1 electron from acidic to near neutral geothermal springs. Many of the detected 16S rRNA gene sequences represent organisms whose metabolisms are consistent with exergonic processes. However, sensitivity analyses demonstrated that reaction free energies do not generally represent the steep gradients in local geochemical conditions resulting from air–water gas exchange and solid phase deposition that are important in defining microbial habitats and 16S rRNA gene sequence distribution within geothermal outflow channels.  相似文献   

2.
Tailoring active sites in earth‐abundant non‐noble metal electrocatalysts are required toward widespread applications in sustainable energy fields. Herein, an integrated mesoporous heterostructure array is reported by a hydrogenation/nitridation‐induced in situ growth strategy. Highly conductive oxygen‐vacancies‐rich tungsten oxynitride (Vo‐WON) nanorod array acts as the backbone encapsulated by ultrathin nitrogen‐doped carbon (NC) nanolayers, forming high‐quality shell/core NC/Vo‐WON heterostructures. Density functional theory calculations reveal that defect‐rich heterostructure arrays not only enhance the conductivity and modulate electronic structure but also promote the adsorption and dissociation of reactants and offer substantial potential sites. As expected, porous NC/Vo‐WON array exhibits a small overpotential of 16 mV at the current density of 10 mA cm?2 and a low Tafel slope of 33 mV per decade in alkaline media, accompanied by negligible loss upon a large current density over 100 h. Benefiting from outstanding electrocatalytic hydrogen evolution reaction performance and stability, this defective heterostructure could serve as a prominent alternative electrocatalyst for renewable energy applications.  相似文献   

3.
Because of the continuous focusing of thermal and chemical energy, ancient submarine hot springs are contenders as sites for the origin of life. But it is generally assumed that these would be of the acid and high-temperature black smoker variety (Corlisset al., 1981). In fact today the greater part of the ocean circulates through off-ridge springs where it issues after modification at temperatures of around 40 °C or so but with the potential to reach 200 °C. Such offridge or ridge-flank springs remind us that there are other candidate sites for the origin of life. Although there is no firm indication of the pH of these off-ridge springs we have argued that the solutions are likely to be alkaline rather than acid.We test the feasibility of this idea using EQ geochemical water-rock interaction modelling codes (Wolery 1983) and find that for a range of possible initial chemistries of Hadean seawater, the pH of issuing solutions at around 200 °C is around one or more units alkaline. Such pH values hold for interaction with both basaltic and komatiitic crust. The robustness of this result suggests to us that alkaline submarine springs of moderate temperature, carrying many hundreds of ppm HS to the ocean basins, are also serious contenders as sites for the origin of life, particularly as Hadean seawater was probably slightly acid, with a dissolved iron concentration approaching 100 ppm. On mixing of these solutions, supersaturation, especially of iron sulphide, would lead to the precipitation of colloidal gels. In our view iron sulphide was the likely substance of, or contributor to, the first vesicle membranes which led to life, as the supply of organic molecules would have been limited in the Hadean. Such a membrane would have had catalytic properties, expansivity, and would have maintained the natural chemiosmotic gradient, a consequence of the acid ocean and the alkaline interior to the vesicles.  相似文献   

4.
Northern Chile harbors different bioclimatic zones including hyper-arid and arid ecosystems and hotspots of microbial life, such as high altitude wetlands, which may contribute differentially to greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In this study, we explored ground level GHG distribution and the potential role of a wetland situated at 3800 m.a.s.l, and characterized by high solar radiation <?1600 W m?2, extreme temperature ranges (?12 to 24 °C) and wind stress (<?17 m s?1). The water source of the wetland is mainly groundwater springs, which generates streams and ponds surrounded by peatlands. These sites support a rich microbial aquatic life including diverse bacteria and archaea communities, which transiently form more complex structures, such as microbial mats. In this study, GHG were measured in the water and above ground level air at the wetland site and along an elevation gradient in different bioclimatic areas from arid to hyper-arid zones. The microbiome from the water and sediments was described by high-throughput sequencing 16S rRNA and rDNA genes. The results indicate that GHG at ground level were variable along the elevation gradient potentially associated with different bioclimatic zones, reaching high values at the high Andean steppe and variable but lower values in the Atacama Desert and at the wetland. The water areas of the wetland presented high concentrations of CH4 and CO2, particularly at the spring areas and in air bubbles below microbial mats. The microbial community was rich (>?40 phyla), including archaea and bacteria potentially active in the different matrices studied (water, sediments and mats). Functional microbial groups associated with GHG recycling were detected at low frequency, i.e., <?2.5% of total sequences. Our results indicate that hyper-arid and arid areas of northern Chile are sites of GHG exchange associated with various bioclimatic zones and particularly in aquatic areas of the wetland where this ecosystem could represent a net sink of N2O and a source for CH4 and CO2.  相似文献   

5.
The hot springs in Yellowstone National Park, USA, provide concentrated microbial biomass and associated mineral crusts from which surface functional group (FG) concentrations and pKa distributions can be determined. To evaluate the importance of substratum surface reactivity for solute adsorption in a natural setting, samples of iron‐rich sediment were collected from three different springs; two of the springs were acid‐sulfate‐chloride (ASC) in composition, while the third was neutral‐chloride (NC). At one of the ASC springs, mats of Sº‐rich Hydrogenobaculum‐like streamers and green Cyanidia algae were also collected for comparison to the sediment. All samples were then titrated over a pH range of 3–11, and comparisons were made between the overall FG availability and the concentration of solutes bound to the samples under natural conditions. Sediments from ASC springs were composed of hydrous ferric oxides (HFO) that displayed surface FGs typical of synthetic HFO, while sediments from the NC spring were characterized by a lower functional group density, reflected by decreased excess charge over the titration range (i.e., lower surface reactivity). The latter also showed a lower apparent point of zero charge (PZC), likely due the presence of silica (up to 78 wt. %) in association with HFO. Variations in the overall HFO surface charge are manifest in the quantities and types of solutes complexed; the NC sediments bound more cations, while the ASC sediments retained significantly more arsenic, presumably in the form of arsenate (H2AsO4?). When the microbial biomass samples were analyzed, FG concentrations summed over the titratable range were found to be an order of magnitude lower for the Sº‐rich mats, relative to the algal and HFO samples that displayed similar FG concentrations on a dry weight basis. A diffuse‐layer surface complexation model was employed to further illustrate the importance of surface chemical parameters on adsorption reactions in complex natural systems.  相似文献   

6.
Mercury rich geothermal springs are likely environments where mercury resistance is critical to microbial life and where microbe-mercury interactions may have evolved. Eleven facultative thermophilic and chemolithoautotrophic, thiosulfate oxidizing bacteria were isolated from thiosulfate enrichments of biofilms from mercury rich hot sulfidic springs in Mount Amiata, Italy. Some strains were highly resistant to mercury (≥200 μM HgCl2) regardless of its presence or absence during primary enrichments, and three reduced ionic mercury to its elemental form. The gene encoding for the mercuric reductase enzyme (MerA), was amplified by PCR from seven strains. However, one highly resistant strain did not reduce mercury nor carried merA, suggesting an alternative resistance mechanism. All strains were members of the order Bacillales and were most closely related to previously described thermophiles belonging to the Firmicutes. Phylogenetic analyses clustered the MerA of the isolates in two supported novel nodes within the Firmicutes lineage and a comparison with the 16S rRNA gene tree suggested at least one case of horizontal gene transfer. Overall, the results show that the thermophilic thiosulfate oxidizing isolates were adapted to life in presence of mercury mostly, but not exclusively, by possessing MerA. These findings suggest that reduction of mercury by chemolithotrophic thermophilic bacteria may mobilize mercury from sulfur and iron deposits in geothermal environments.  相似文献   

7.
The source waters of acid‐sulphate‐chloride (ASC) geothermal springs located in Norris Geyser Basin, Yellowstone National Park contain several reduced chemical species, including H2, H2S, As(III), and Fe(II), which may serve as electron donors driving chemolithotrophic metabolism. Microorganisms thriving in these environments must also cope with high temperatures, low pH (~3), and high concentrations of sulphide, As(III), and boron. The goal of the current study was to correlate the temporal and spatial distribution of bacterial and archaeal populations with changes in temperature and geochemical energy gradients occurring throughout a newly formed (redirected) outflow channel of an ASC spring. A suite of complimentary analyses including aqueous geochemistry, microscopy, solid phase identification, and 16S rDNA sequence distribution were used to correlate the appearance of specific microbial populations with biogeochemical processes mediating S, Fe, and As cycling and subsequent biomineralization of As(V)‐rich hydrous ferric oxide (HFO) mats. Rapid As(III) oxidation (maximum first order rate constants ranged from 4 to 5 min?1, t1/2 = 0.17 ? 0.14 min) was correlated with the appearance of Hydrogenobaculum and Thiomonas–like populations, whereas the biogenesis of As(V)‐rich HFO microbial mats (mole ratios of As:Fe ~0.7) was correlated with the appearance of Metallosphaera, Acidimicrobium, and Thiomonas–like populations. Several 16S sequences detected near the source were closely related to sequences of chemolithotrophic hyperthermophilic populations including Stygiolobus and Hydrogenobaculum organisms that are known H2 oxidizers. The use of H2, reduced S(–II,0), Fe(II) and perhaps As(III) by different organisms represented throughout the outflow channel was supported by thermodynamic calculations, confirming highly exergonic redox couples with these electron donors. Results from this work demonstrated that chemical energy gradients play an important role in establishing distinct community structure as a function of distance from geothermal spring discharge.  相似文献   

8.
MoS2 has emerged as a promising alternative electrocatalyst for the hydrogen evolution reaction (HER) due to high intrinsic per‐site activity on its edge sites and S‐vacancies. However, a significant challenge is the limited density of such sites. Reducing the size and layer number of MoS2 and vertically aligning them would be an effective way to enrich and expose such sites for HER. Herein, a facile self‐limited on‐site conversion strategy for synthesizing monolayer MoS2 in a couple of nanometers which are highly dispersed and vertically aligned on 3D porous carbon sheets is reported. It is discovered that the preformation of well‐dispersed MoO3 nanodots in 1–2 nm as limited source is the key for the fabrication of such an ultrasmall MoS2 monolayer. As indicated by X‐ray photoelectron spectroscopy and electron spin resonance data, these ultrasmall MoS2 monolayers are rich in accessible S‐edge sites and vacancies and the smaller MoS2 monolayers the more such sites they have, leading to enhanced electrocatalytic activity with a low overpotential of 126 mV at 10 mA cm?2 and 140 mV at 100 mA mg?1 for HER. This state‐of‐the‐art performance for MoS2 electrocatalysts enables the present strategy as a new avenue for exploring well‐dispersed ultrasmall nanomaterials as efficient catalysts.  相似文献   

9.
We used measurements of CO2 exchange by six Canadian boreal forest stands to determine how sites of contrasting age respond to interannual temperature and precipitation variation. The stands ranged in age (time since last burn) from 4 to 155 years. The study included years that were anomalously cool and moist, warm and dry, cool and dry, and warm and moist. Warmer than average springs accelerated the onset of older stand (> 20 years) photosynthesis by as much as 37 days and younger stand (< 20 years) photosynthesis by as much as 25 days. The warm–dry year resulted in a marked reduction of mid‐summer CO2 uptake by the younger, but not older, stands. The mid‐summer decline in young stand photosynthesis reflected the combination of warmth and drought; similar declines were not observed during the cool–dry or warm–moist years. The annual carbon gain by the oldest stands was greatest during the warm–dry year as a result of the expanded growing season. The annual carbon gain by the youngest stands was consistent from year to year, largely as a result of offsets between increased spring photosynthesis and reduced mid‐summer photosynthesis during the warm–dry year. Night‐time CO2 efflux increased by 2–29% during the warm–moist year relative to the warm–dry year. This increase was not systematically related to age. We conclude that the major source of interannual CO2 exchange variation at the landscape scale is the ability of older, evergreen canopies to respond to warm springs by advancing the onset of photosynthesis. Drought‐related reductions in photosynthesis, moisture‐driven respiratory losses, and the effects of spring warmth on young‐stand photosynthesis are of secondary importance. The advantage conferred on older, evergreen stands during warmer years carries implications for the possible effects of climate change on boreal forest succession. Warmer temperatures may increase the competitive advantage of late successional species relative to early successional species, and also the incidence of fire, thereby accelerating plant succession and shortening the fire‐return interval.  相似文献   

10.
11.
Hydrothermal fluids passing through basaltic rocks along mid‐ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt‐hosted systems is available through sulfide oxidation and in ultramafic‐hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt‐hosted and from hydrogen oxidation in ultramafic‐hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt‐hosted and ultramafic‐hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen‐rich (ultramafic‐hosted) but also in naturally hydrogen‐poor (basalt‐hosted) hydrothermal fluids. Moreover, hydrogen oxidation–based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic‐hosted or basalt‐hosted sites were used. Site‐specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free‐living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.  相似文献   

12.
Climate change and anthropogenic nitrogen deposition are widely regarded as important drivers of environmental change in alpine habitats. However, due to the difficulties working in high‐elevation mountain systems, the impacts of these drivers on alpine breeding species have rarely been investigated. The Eurasian dotterel (Charadrius morinellus) is a migratory wader, which has been the subject of uniquely long‐term and spatially widespread monitoring effort in Scotland, where it breeds in alpine areas in dwindling numbers. Here we analyse data sets spanning three decades, to investigate whether key potential drivers of environmental change in Scottish mountains (snow lie, elevated summer temperatures and nitrogen deposition) have contributed to the population decline of dotterel. We also consider the role of rainfall on the species' wintering grounds in North Africa. We found that dotterel declines—in both density and site occupancy of breeding males—primarily occurred on low and intermediate elevation sites. High‐elevation sites mostly continued to be occupied, but males occurred at lower densities in years following snow‐rich winters, suggesting that high‐elevation snow cover displaced dotterel to lower sites. Wintering ground rainfall was positively associated with densities of breeding males two springs later. Dotterel densities were reduced at low and intermediate sites where nitrogen deposition was greatest, but not at high‐elevation sites. While climatic factors explained variation in breeding density between years, they did not seem to explain the species' uphill retreat and decline. We cannot rule out the possibility that dotterel have increasingly settled on higher sites previously unavailable due to extensive snow cover, while changes associated with nitrogen deposition may also have rendered lower lying sites less suitable for breeding. Causes of population and range changes in mountain‐breeding species are thus liable to be complex, involving multiple anthropogenic drivers of environmental change acting widely across annual and migratory life cycles.  相似文献   

13.
The altering of electronic states of metal oxides offers a promising opportunity to realize high‐efficiency surface catalysis, which play a key role in regulating polysulfides (PS) redox in lithium–sulfur (Li–S) batteries. However, little effort has been devoted to understanding the relationship between the electronic state of metal oxides and a catalyst's properties in Li–S cells. Herein, defect‐rich heterojunction electrocatalysts composed of ultrathin TiO2‐x nanosheets and carbon nanotubes (CNTs) for Li–S batteries are reported. Theoretical simulations indicate that oxygen vacancies and heterojunction can enhance electronic conductivity and chemical adsorption. Spectroscopy and electrochemical techniques further indicate that the rich surface vacancies in TiO2‐x nanosheets result in highly activated trapping sites for LiPS and lower energy barriers for fast Li ion mobility. Meanwhile, the redistribution of electrons at the heterojunction interfaces realizes accelerated surface electron exchange. Coupled with a polyacrylate terpolymer (LA132) binder, the CNT@TiO2‐x–S electrodes exhibit a long cycle life of more than 300 cycles at 1 C and a high area capacity of 5.4 mAh cm?2. This work offers a new perspective on understanding catalyst design in energy storage devices through band engineering.  相似文献   

14.
To pursue a higher energy density (>300 Wh kg?1 at the cell level) and a lower cost (<$125 kWh?1 expected at 2022) of Li‐ion batteries for making electric vehicles (EVs) long range and cost‐competitive with internal combustion engine vehicles, developing Ni‐rich/Co‐poor layered cathode (LiNi1?x?yCoxMnyO2, x+y ≤ 0.2) is currently one of the most promising strategies because high Ni content is beneficial to high capacity (>200 mAh g?1) while low Co content is favorable to minimize battery cost. Unfortunately, Ni‐rich cathodes suffer from limited structure stability and electrode/electrolyte interface stability in the charged state, leading to electrode degradation and poor cycling performance. To address these problems, various strategies have been employed such as doping, structural optimization design (e.g., core–shell structure, concentration‐gradient structure, etc.), and surface coating. In this review, five key aspects of Ni‐rich/Co‐poor layered cathode materials are explored: energy density, fast charge capability, service life including cycling life and calendar life, cost and element resources, and safety. This enables a comprehensive analysis of current research advances and challenges from the perspective of both academy and industry to help facilitate practical applications for EVs in the future.  相似文献   

15.
Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P‐GDGTs) and core GDGTs (C‐GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5–10.1 and a temperature range of 43.7–93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P‐ and C‐GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P‐ and C‐GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring‐characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community.  相似文献   

16.
The hyper-alkaline, high-Ca2+ springs of Maqarin, Jordan, were investigated as an analogue for various microbial processes at the extremely high pH generated by cement and concrete in some underground radioactive waste repositories. Leaching of metamorphic, cementitious phases in Maqarin has produced current, hyper-alkaline groundwater with a maximum pH of 12.9. Six consecutive expeditions were undertaken to the area during 1994–2000. The total number of microorganisms in the alkaline waters was 103–105 cells/ml. Analysis of the 16S-ribosomal ribonucleic acid (rRNA) diversity revealed microorganisms mainly belonging to the Proteobacteria. Obvious similarities between the obtained sequences and sequences from other alkaline sites could not be found. Numerous combinations of culture media compositions were inoculated with spring, seepage and groundwaters and incubated under aerobic and anaerobic conditions with various carbon sources. Assimilation studies were performed using identical radio-labeled carbon sources. Glucose seemed to be the preferred carbon source for assimilation, followed by acetate, lactate, and leucine. The results demonstrate that microorganisms from the hyper-alkaline springs of Maqarin could grow and be metabolically active under aerobic and anaerobic hyper-alkaline conditions. However, the growth and activity found were not vigorous; instead, slow growth, low numbers, and a generally low metabolic activity were found. This suggests that microbial activity will be low during the hyper-alkaline phase of cementitious repositories.Communicated by W.D. Grant  相似文献   

17.
18.
Developing efficient, durable, and earth‐abundant electrocatalysts for both hydrogen and oxygen evolution reactions is important for realizing large‐scale water splitting. The authors report that FeB2 nanoparticles, prepared by a facile chemical reduction of Fe2+ using LiBH4 in an organic solvent, are a superb bifunctional electrocatalyst for overall water splitting. The FeB2 electrode delivers a current density of 10 mA cm?2 at overpotentials of 61 mV for hydrogen evolution reaction (HER) and 296 mV for oxygen evolution reaction (OER) in alkaline electrolyte with Tafel slopes of 87.5 and 52.4 mV dec?1, respectively. The electrode can sustain the HER at an overpotential of 100 mV for 24 h and OER for 1000 cyclic voltammetry cycles with negligible degradation. Density function theory calculations demonstrate that the boron‐rich surface possesses appropriate binding energy for chemisorption and desorption of hydrogen‐containing intermediates, thus favoring the HER process. The excellent OER activity of FeB2 is ascribed to the formation of a FeOOH/FeB2 heterojunction during water oxidation. An alkaline electrolyzer is constructed using two identical FeB2‐NF electrodes as both anode and cathode, which can achieve a current density of 10 mA cm?2 at 1.57 V for overall water splitting with a faradaic efficiency of nearly 100%, rivalling the integrated state‐of‐the‐art Pt/C and RuO2/C.  相似文献   

19.
Paradoxically, symbiotic dinitrogen (N2) fixers are abundant in nitrogen (N)‐rich, phosphorus (P)‐poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N‐rich enzymes (phosphatases) that mineralise organic P than non‐N2 fixers. We assessed soil and root phosphatase activity between fixers and non‐fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non‐fixers. Root phosphatase activity and AM colonisation were higher for fixers than non‐fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N–P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.  相似文献   

20.
The quest for high energy density and high power density electrode materials for lithium‐ion batteries has been intensified to meet strongly growing demand for powering electric vehicles. Conventional layered oxides such as Co‐rich LiCoO2 and Ni‐rich Li(NixMnyCoz)O2 that rely on only transition metal redox reaction have been faced with growing constraints due to soaring price on cobalt. Therefore, Mn‐rich electrode materials excluding cobalt would be desirable with respect to available resources and low cost. Here, the strategy of achieving both high energy density and high power density in Mn‐rich electrode materials by controlling the solubility of atoms between phases in a composite is reported. The resulting Mn‐rich material that is composed of defective spinel phase and partially cation‐disordered layered phase can achieve the highest energy density, ≈1100 W h kg?1 with superior power capability up to 10C rate (3 A g?1) among other reported Mn‐rich materials. This approach provides new opportunities to design Mn‐rich electrode materials that can achieve high energy density and high power density for Li‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号