首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Surrogate species approaches, including flagship, focal, keystone, indicator, and umbrella, are considered an effective means of conservation planning. For conservation biologists to apply surrogates with confidence, they must have some idea of the effectiveness of surrogates for the circumstances in which they will be applied. We reviewed tests of the effectiveness of surrogate species planning to see if research supports the development of generalized rules for (1) determining when and where surrogate species are an effective conservation tool and (2) how surrogate species should be selected such that the resulting conservation plan will effectively protect biodiversity or achieve other conservation goals. The context and methods of published studies were so diverse that we could not draw general conclusions about the spatial or temporal scales, or ecosystems or taxonomic groups for which surrogate species approaches will succeed. The science of surrogate species can progress by (1) establishing methods to compare diverse measures of effectiveness; (2) taking advantage of data-rich regions to examine the potential effectiveness of surrogate approaches; (3) incorporating spatial scale as an explanatory variable; (4) evaluating surrogate species approaches at broader temporal scales; (5) seeking patterns that will lead to hypothesis driven research; and (6) monitoring surrogate species and their target species.  相似文献   

2.
Aim Virtually all studies exploring the use of taxonomic surrogates in assessing patterns of diversity have focused on clear shifts in the location of samples in multivariate space. The potential use of coarser levels of taxonomic resolution to detect patterns of variability in multivariate space, corresponding to β‐diversity in the case of presence/absence data, remains unexplored. Here we considered five ecological data sets of highly diverse marine molluscan assemblages to test the hypothesis that patterns in compositional heterogeneity would be maintained at coarser levels of taxonomic resolution. Location Italy, Norway, New Zealand and the Arctic. Methods We used multivariate dispersion based on the Jaccard resemblance measure of presence/absence data as a measure of β‐diversity to test the null hypothesis that patterns of heterogeneity in species composition for molluscs would be maintained at coarser levels of taxonomic resolution. Tests to compare β‐diversities among groups (based on distances to centroids and using 9999 permutations) were carried out separately for each of five data sets at the species level and then for each of genus, family, order and class levels. Results Differences in multivariate dispersion at the species level (heterogeneity in the identities of species) were maintained for genera and for families, but not at coarser levels of taxonomic resolution (order or class). These results were consistent across all data sets, despite differences in their spatial scale and extent, geographical location, environmental and habitat features (benthic soft sediments, rocky reefs or kelp holdfasts). Main conclusions These results suggest that either genera or families may be used as effective taxonomic surrogates to detect spatial differences in β‐diversity for molluscs. The use of surrogates can provide considerable sampling efficiencies for biodiversity assessments. We consider, however, that a degree of caution and more work is needed, as heterogeneity at the species level may not be reflected by taxonomic surrogates at smaller spatial scales.  相似文献   

3.

Aim

Conservation assessment and planning across extensive regions rely on the use of mapped or modelled surrogates because direct field‐based inventories of biodiversity rarely provide complete spatial coverage. Surrogates are assumed to represent spatial patterns in the distribution of biodiversity, yet the validity of this assumption is rarely evaluated. Here, we use data from new biological surveys targeting poorly known taxonomic groups across sparsely surveyed landscapes to test: (1) the performance of established and novel surrogates; and (2) the value of targeted survey data in further improving surrogate effectiveness.

Location

Continental Australia.

Methods

Surrogates were derived from either mapped land classifications (bioregions, vegetation types), or models of spatial turnover in biodiversity composition. Models were derived by linking best‐available biological observations to high‐resolution mapped climate, terrain and soil attributes using generalized dissimilarity modelling (GDM). The performance of surrogates was evaluated using survey data for eight biological groups collected as part of the Bush Blitz programme ( http://bushblitz.org ). For the GDM‐based surrogates, within‐ and cross‐taxon performance was first evaluated for models fitted to biological data available prior to Bush Blitz, and then for models enhanced through the addition of the Bush Blitz data.

Results

All of the tested surrogates performed significantly better than random across all eight biological groups. GDM‐based surrogates performed over 10% better on average than the best performing combination of mapped land classifications. The addition of Bush Blitz targeted data in GDM‐based surrogates led to further improvements in surrogate performance.

Main conclusions

Our results support continued investment in targeted biological survey programmes to enhance the performance of surrogates and ensure that surrogates represent a wider breadth of biodiversity. The strong performance of compositional turnover modelling, relative to mapped land classifications, suggests that this surrogate strategy deserves greater consideration in future conservation assessments and has potential for use in continental‐scale monitoring of biodiversity.
  相似文献   

4.
Aim The ‘taxonomic impediment’ has led to a growing trend in ecology and conservation biology to use operational surrogates for species within the context of a particular research project. Because such ‘parataxonomic’ classifications are typically spatially limited in scope, we examined the influence of increasing spatial scale on the congruence of two such approaches with a more traditional taxonomic classification. Location Sturt National Park, north‐western New South Wales, Australia. Methods Specimens of two ant genera, Camponotus and Rhytidoponera, were classified by three independent methods. The ‘parataxonomic’ classification assigned specimens to morphospecies without specialist taxonomic expertise; the ‘taxonomic’ classification assigned specimens to either described species or, where this was not possible, to operational taxonomic units (OTUs) using specialist taxonomic expertise; the ‘phenetic’ classification assigned specimens to putative species using a K‐means partitioning algorithm on basic morphometric data. Specimens of each genus were pooled into ‘assemblages’, which were defined at multiple spatial scales using a nested sampling design. Congruence in the interspecimen relationships of the different classifications was tested for each assemblage using pair‐wise Mantel correlations. Results Classification congruence tended to decrease with increasing spatial scale. There were, however, clear differences between the genera. Parataxonomic–taxonomic congruence was consistently greater for Camponotus, while phenetic–taxonomic congruence showed the opposite pattern. Conclusions Observed patterns in classification congruence are attributed to two principal causes: (i) within‐species morphological variation, including ecotypic variation in Rhytidoponera and caste polymorphism in Camponotus; and (ii) a limit to the morphological similarity of potentially competing species at small spatial scales. Regardless of cause, the decline in agreement as the spatial scale of observation is increased has important implications for the measurement of biodiversity, particularly when comparing samples over regional, continental, and global scales.  相似文献   

5.
Given the logistical difficulties, cost, and time involved in species-level identifications, several authors have proposed the use of coarser taxonomic resolution (e.g. family, order) in studies of pollution. The use of surrogates instead of species relies on their sufficiency to detect community responses to the pollution gradient without appreciable loss of information. No studies, however, have applied this approach to experimental studies such as community responses to predation disturbance and evaluated the performance of surrogates at the spatial scales typical of experiments. We addressed both problems by analyzing the results of three predation experiments carried out in Bonne Bay, Newfoundland. We pooled species data into coarser taxonomic categories (family to class) and determined whether effects of predation that were evident at the species level were also evident with the use of each coarser surrogate and increasing data transformation. Our results indicate that non-transformed data at the family level represent a reasonable surrogate of species; however, the ability to discriminate between ambient and (predator) manipulated sediments is gradually lost with data transformation and with the pooling of species into coarser taxonomic categories. Successive data transformation indicates that in this system predation plays a strong role on dominant but not necessarily rare species. Moreover, our results suggest that varying reliability of surrogates precludes the identification of a single general level of taxonomic sufficiency to be used in experimental studies. The use of surrogates, therefore, is suggested only after scrutiny and evaluation, and should be limited to preliminary studies where biodiversity has been well described.  相似文献   

6.
A fundamental decision in biodiversity assessment is the selection of one or more study taxa, a choice that is often made using qualitative criteria such as historical precedent, ease of detection, or available technical or taxonomic expertise. A more robust approach would involve selecting taxa based on the a priori expectation that they will provide the best possible information on unmeasured groups, but data to inform such hypotheses are often lacking. Using a global meta‐analysis, we quantified the proportion of variability that each of 12 taxonomic groups (at the Order level or above) explained in the richness or composition of other taxa. We then applied optimization to matrices of pairwise congruency to identify the best set of complementary surrogate groups. We found that no single taxon was an optimal surrogate for both the richness and composition of unmeasured taxa if we used simple methods to aggregate congruence data between studies. In contrast, statistical methods that accounted for well‐known drivers of cross‐taxon congruence (spatial extent, grain size, and latitude) lead to the prioritization of similar surrogates for both species richness and composition. Advanced statistical methods were also more effective at describing known ecological relationships between taxa than simple methods, and show that congruence is typically highest between taxonomically and functionally dissimilar taxa. Birds and vascular plants were most frequently selected by our algorithm as surrogates for other taxonomic groups, but the extent to which any one taxon was the ‘optimal’ choice of surrogate for other biodiversity was highly context‐dependent. In the absence of other information – such as in data‐poor areas of the globe, and under limited budgets for monitoring or assessment – ecologists can use our results to assess which taxa are most likely to reflect the distribution of the richness or composition of ‘total’ biodiversity.  相似文献   

7.
Policies to mitigate climate change and biodiversity loss often assume that protecting carbon‐rich forests provides co‐benefits in terms of biodiversity, due to the spatial congruence of carbon stocks and biodiversity at biogeographic scales. However, it remains unclear whether this holds at the scales relevant for management, and particularly large knowledge gaps exist for temperate forests and for taxa other than trees. We built a comprehensive dataset of Central European temperate forest structure and multi‐taxonomic diversity (beetles, birds, bryophytes, fungi, lichens, and plants) across 352 plots. We used Boosted Regression Trees (BRTs) to assess the relationship between above‐ground live carbon stocks and (a) taxon‐specific richness, (b) a unified multidiversity index. We used Threshold Indicator Taxa ANalysis to explore individual species’ responses to changing above‐ground carbon stocks and to detect change‐points in species composition along the carbon‐stock gradient. Our results reveal an overall weak and highly variable relationship between richness and carbon stock at the stand scale, both for individual taxonomic groups and for multidiversity. Similarly, the proportion of win‐win and trade‐off species (i.e., species favored or disadvantaged by increasing carbon stock, respectively) varied substantially across taxa. Win‐win species gradually replaced trade‐off species with increasing carbon, without clear thresholds along the above‐ground carbon gradient, suggesting that community‐level surrogates (e.g., richness) might fail to detect critical changes in biodiversity. Collectively, our analyses highlight that leveraging co‐benefits between carbon and biodiversity in temperate forest may require stand‐scale management that prioritizes either biodiversity or carbon in order to maximize co‐benefits at broader scales. Importantly, this contrasts with tropical forests, where climate and biodiversity objectives can be integrated at the stand scale, thus highlighting the need for context‐specificity when managing for multiple objectives. Accounting for critical change‐points of target taxa can help to deal with this specificity, by defining a safe operating space to manipulate carbon while avoiding biodiversity losses.  相似文献   

8.
The choice of surrogates of biodiversity is an important aspect in conservation biology. The quantification of the coincidence in the spatial patterns of species richness and rarity between different groups and the vulnerability of groups are different approaches frequently considered to accomplish this task. However, a more appropriate approach is to verify the efficiency of priority networks selected using information from one group of organisms to capture the biodiversity of other groups. Using a deconstructive approach, the main purposes of this study were to evaluate the performance of some orders and families of birds in the Cerrado biome (a savanna-like biome) as surrogates of other bird groups, in a pairwise analysis, and to investigate the characteristics of these groups that predict the efficiency in representation of other groups. We used biogeographical data on bird orders or families with more than 10 species that occur in the Brazilian Cerrado. The best surrogate group was the Thamnophilidae. Moreover, this group is not the most specious, favouring further survey efforts that are necessary to verify the conservation value of areas at suitable scales. The majority of the species from this family are dependent on forest habitats, one of the characteristics that most influenced representativeness level, probably due to the spatial distribution of these habitats throughout the Brazilian Cerrado. Beta diversity patterns of the different groups also affected representativeness, and our analyses showed that the networks selected by a surrogate group will be more effective in the representation of other groups of species if their patterns of beta diversity (not richness) are correlated.  相似文献   

9.
In a context of scarce financial and human resources, the allocation of conservation efforts needs to be optimized. Our analysis attempts to draw conclusions on the integration of regional and local conservation assessments, specifically, with regard to the acquisition of fine‐scale data to complement the regional assessment. This study undertaken in Réunion Island (Indian Ocean) assessed how biodiversity surrogates targeted at a regional scale represented other biodiversity surrogates at a local scale. Biodiversity surrogates at both scales consisted of species, habitats and processes. Habitats and processes at regional scale were defined using a coarser scale of thematic resolution than at local scale. The surrogacy was tested in terms of incidental representation of local‐scale features in the regional assessments, and correlation of irreplaceability values between scales. Near‐minimum sets and irreplaceability values were generated using MARXAN software. Our results revealed that conservation targets for processes at local scale were never met incidentally, while threatened species and fragmented habitats were also usually under‐represented. More specifically, requiring only 12% of the local planning domain, the application of species as surrogates at regional scale was the least effective option at representing biodiversity features at local scale. In contrast, habitats at a coarse scale of thematic resolution achieved a significant proportion of conservation targets incidentally (67%) and their irreplaceability values were well correlated with the irreplaceability values of surrogates at local scale. The results highlighted that all three types of biodiversity surrogates are complementary for assessing overall biodiversity. Because of the cost of data acquisition, we recommended that the most efficient strategy to develop nested regional/local conservation plans is to apply habitats and processes at a coarse scale of thematic resolution at regional scale, and threatened species and degraded habitats at local scale, with their fine‐scale mapping limited to highly transformed areas.  相似文献   

10.
The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P) and as the predictability of targets using surrogates (R(2)). A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R(2). The type of surrogate used (higher-taxa, cross-taxa or subset taxa) was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R(2), with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.  相似文献   

11.
In European forests, large scale biodiversity monitoring networks need to be implemented – networks which include components such as taxonomical groups that are at risk and that depend directly on forest stand structure. In this context, monitoring the species-rich group of saproxylic beetles is challenging. In the absence of sufficient resources to comprehensively survey a particular group, surrogates of species richness can be meaningful tools in biodiversity evaluations. In search of restricted subsets of species to use as surrogates of saproxylic beetle richness, we led a case study in Western Europe.Beetle data were compiled from 67 biodiversity surveys and ecological studies carried out from 1999 to 2010 with standardised trapping methods in France and Belgium. This large-scale dataset contains 642 forest plots, 1521 traps and 856 species. Twenty-two simplified species subsets were identified as potential surrogates, as well as the number of genera, a higher taxonomic level, taking into account, for each surrogate, the effort required for species identification, the practical monitoring experience necessary, the species conservation potential or the frequency of species occurrence. The performance of each surrogate was analyzed based on the following parameters: overall surrogacy (correlation between subset richness and total species richness), surrogacy vs. identification cost balance, surrogacy variation over a wide range of ecological conditions (forest type, altitude, latitude and bio-geographical area) and consistency with spatial scale. Ecological representativeness and ability to monitor rare species were supplementary criteria used to assess surrogate performance.The subsets consisting of the identifiable (or only easy-to-identify species) could easily be applied in practice and appear to be the best performing subsets, from a global point of view.The number of genera showed good prediction at the trap level and its surrogacy did not vary across wide environmental gradients. However, the subset of easy-to-identify species and the genus number were highly sensitive to spatial scale, which limits their use in large-scale studies. The number of rare species or the species richness of single beetle families (even the best single-family subset, the Cerambycidae) was very weak surrogates for total species richness. Conversely, the German list of monitoring species had high surrogacy, low identification costs and was not strongly influenced by the main geographical parameters, even with our French and Belgian data.In European-wide monitoring networks, such internationally validated subsets could be very useful with regard to the timing and cost-efficiency of field inventories.  相似文献   

12.
Wetlands are among the most threatened habitats and the species they support among the most endangered taxa. Measuring and monitoring wetland biodiversity is vital for conservation, restoration and management, and often relies on the use of surrogate taxa. Waterbirds are commonly used as flagships of biodiversity and are the subject of major conservation initiatives. Therefore, it is important to assess the extent to which waterbirds indicate the general biodiversity of wetlands and serve as surrogates.We explore the relationships between community composition and species richness of waterbirds and aquatic macroinvertebrates in 36 Ramsar wetlands in southern Spain to assess if waterbirds are good surrogates for other taxonomic groups. Specifically, we aimed to (i) test the congruence of patterns of species composition and richness among waterbirds and aquatic macroinvertebrates; and (ii) investigate which environmental variables are associated with the biodiversity patterns of waterbirds and macroinvertebrates, with the purpose of identifying key factors explaining potential discordance in these patterns.We found a limited concordance between assemblage patterns of both taxonomic groups that may be related to their contrasting responses to environmental gradients. Assemblages of waterbirds appear to be more affected by climate variables and water surface area, whereas conductivity was the most important factor influencing macroinvertebrate communities. Furthermore, we found a negligible or inverse relationship in their patterns of richness, with wetlands with higher waterbird species richness showing significantly lower richness of Hemiptera and macroinvertebrate families, and no significant relationship with Coleoptera. In addition, GLM models showed that, in general, different environmental variables are related with the richness patterns of the different taxonomic groups.Given the importance of the Ramsar convention for the conservation of an international network of wetlands, our findings underline the limited potential of waterbirds as aquatic biodiversity indicators in Mediterranean wetlands, and the need for caution when using waterbirds as flagships. An integrative analysis of different biological communities, using datasets from different taxonomic groups, is a necessary precursor for successful conservation policies and monitoring. Our results illustrate the need to create a diversified and complete network of protected sites able to conserve multiple components of wetland biodiversity.  相似文献   

13.
Due to the difficulty of identifying many taxa of freshwater invertebrates to species, many researchers have assessed the utility of surrogates for species-level identifications (e.g. higher taxa) in bioassessment programs. Here, we examined the efficiency of two different approaches to species surrogacy, one using coarser taxonomic resolution and a second approach based on random aggregation (“Best practicable aggregation of species”, BestAgg), in portraying patterns of stream macroinvertebrates in Central China. The main objectives were: (1) to compare the discriminatory power of biodiversity indices and assemblage structure for different levels of human disturbances based on different taxonomic resolution and on BestAgg; (2) to identify the congruence of assemblage-environment and biodiversity-indices-environment relationships for datasets at the species level versus those at surrogate levels. We found that genus-level and BestAgg datasets accurately reproduced the pattern of species-level communities, whereas family- and order-level datasets did not. Specifically, both genus-level and BestAgg approaches performed almost as well as species-level data in distinguishing sites subjected to different disturbance levels. Most of the environmental variables that were important for species-level assemblages, also emerged as significant when analyzing genera and BestAgg surrogates, as shown by both analyses of indices and assemblage composition according to distance-based ordination models. Our results suggest that genus-level taxonomy, which resulted in the least loss of ecological information relative to species-level identification, is sufficient in studies of community ecology and bioassessment of stream macroinvertebrates in Central China. In addition, the BestAgg approach, which required identification of fewer taxa than genus-level analysis, has a similar ability to depict multivariate patterns of macroinvertebrate assemblages and differentiate different disturbance levels. Applying our results could enhance speed and cost-effectiveness of freshwater biomonitoring and bioassessment programs; however, independent determination of best taxonomic level and BestAgg will be required whenever a new geographic area or habitat type is assessed.  相似文献   

14.
1. Broad‐scale assessments of biodiversity often rely on the use of surrogate taxa, whose reliability has rarely been tested, particularly in freshwater systems. Here we use data from 46 ponds in two regions of the U.K. to explore the performance of macroinvertebrate taxa as surrogates for the rapid assessment of pond biodiversity. For the four dominant taxonomic groups in these ponds (Chironomidae, Coleoptera, Gastropoda and Trichoptera) we explore cross‐taxon species richness relationships in each of the two regions, and also determine the degree of concordance between the different taxa in accurately representing the similarity relationships between pond assemblages. 2. Patterns of cross‐taxon congruence in species richness were highly variable among taxa and study sites, making the use of a single taxon as a predictor of overall macroinvertebrate species richness problematic. In contrast, all four taxa show >70% congruence with the pattern of community similarity between sites resulting from the entire macroinvertebrate dataset, this result being consistent within and between regions. Canonical correspondence analysis demonstrated that all taxa were related in a similar manner to measured environmental parameters, meaning that limited additional ecological information is gained by including a wider range of pond taxa in rapid site assessment. 3. Single taxonomic groups can, therefore, perform consistently as indicators of community similarity between ponds, and no one taxon dramatically outperforms any other in this respect. The relative merits of the four focal taxa as surrogates for pond invertebrate assemblage composition are discussed with reference to ease of survey, ease of identification and ecological range occupied. 4. It is suggested that Coleoptera have a number of advantages as a surrogate taxon, being diverse, easily sampled, readily identified, taxonomically stable, ecologically well understood and occurring across a wide spectrum of pond types. They are therefore recommended for use as a focal group in rapid pond biodiversity assessments, employing an approach such as ours, which examines patterns of assemblage similarity, rather than species richness alone.  相似文献   

15.
Indicator species groups are often used as surrogates for overall biodiversity in conservation planning because inventories of multiple taxa are rare, especially in the tropics where most biodiversity is found. At coarse spatial scales most studies show congruence in the distribution of species richness and of endemic and threatened species of different species groups. At finer spatial scale levels however, cross-taxon congruence patterns are much more ambiguous. In this study we investigated cross-taxon patterns in the distribution of species richness of trees, birds and bats across four tropical forest types in a ca. 100 × 35 km area in the Northern Sierra Madre region of Luzon Island, Philippines. A non-parametric species richness estimator (Chao1) was used to compensate for differential sample sizes, sample strategies and completeness of species richness assessments. We found positive but weak congruence in the distribution of all and endemic tree and bird and tree and bat species richness across the four forest types; strong positive congruence in the distribution of all and endemic bat and bird species richness and low or negative congruence in the distribution of globally threatened species between trees, birds and bats. We also found weak cross-taxon congruence in the complementarity of pairs of forest types in species richness between trees and birds and birds and bats but strong congruence in complementarity of forest pairs between trees and bats. This study provides further evidence that congruence in the distribution of different species groups is often ambiguous at fine to moderate spatial scales. Low or ambiguous cross-taxon congruence complicates the use of indicator species and species groups as a surrogate for biodiversity in general for local systematic conservation planning.  相似文献   

16.
β‐diversity (variation in community composition) is a fundamental component of biodiversity, with implications for macroecology, community ecology and conservation. However, its scaling properties are poorly understood. Here, we systematically assessed the spatial scaling of β‐diversity using 12 empirical large‐scale datasets including different taxonomic groups, by examining two conceptual types of β‐diversity and explicitly considering the turnover and nestedness components. We found highly consistent patterns across datasets. Multiple‐site β‐diversity (i.e. variation across multiple sites) scaling curves were remarkably consistent, with β‐diversity decreasing with sampled area according to a power law. For pairwise dissimilarities, the rates of increase of dissimilarity with geographic distance remained largely constant across scales, while grain size (or scale level) had a stronger effect on overall dissimilarity. In both analyses, turnover was the main contributor to β‐diversity, following total β‐diversity patterns closely, while the nestedness component was largely insensitive to scale changes. Our results highlight the importance of integrating both inter‐ and intraspecific aggregation patterns across spatial scales, which underpin substantial differences in community structure from local to regional scales.  相似文献   

17.
The urgent need to conserve aquatic biodiversity and the lack of spatial data on biodiversity has motivated conservation planners and researchers to search for more readily obtainable information that could be used as proxies or surrogates. The surrogate taxon approach shows promise in some aquatic environments (e.g. intertidal) but not others (e.g. coral reefs, temperate rocky reefs). Estuaries are transitional environments at the land–sea junction with a unique biodiversity, but are the most threatened of aquatic environments because of high levels of human use. The comparatively small numbers of conservation reserves means that estuarine biodiversity is poorly protected. Selecting additional conservation reserves within estuaries would be facilitated by the identification of a suitable surrogate that could be used in conservation planning. In one estuary in Southeast Australia, we evaluated separately the effectiveness of annelids, arthropods, and molluscs as surrogates for predicting the species richness, abundance, assemblage variation, and summed irreplaceability of other species and for coincidentally representing other species in networks of conservation reserves selected for each surrogate. Spatial patterns in the species richness and assemblage variation (but not summed irreplaceability) of each surrogate were significantly correlated with the spatial patterns of other species. The total abundance of annelids and the total abundance of arthropods were each significantly correlated with the total abundances of other species. Networks of conservation reserves selected to represent each surrogate performed significantly better than random selection in representing other species. The greatest number of non-surrogate species was coincidentally included in reserves selected for the group of mollusc species. We conclude that annelids and arthropods are effective surrogate taxa for identifying spatial variation in several measures of conservation value (species richness, abundance, assemblage variation) in estuaries. We also conclude that spatial data on annelids, arthropods or molluscs can be used to select networks of conservation reserves in estuaries. The demonstrated effectiveness of these surrogates should facilitate future conservation planning within estuaries.  相似文献   

18.
The available taxonomic expertise and knowledge of species is still inadequate to cope with the urgent need for cost‐effective methods to quantifying community response to natural and anthropogenic drivers of change. So far, the mainstream approach to overcome these impediments has focused on using higher taxa as surrogates for species. However, the use of such taxonomic surrogates often limits inferences about the causality of community patterns, which in turn is essential for effective environmental management strategies. Here, we propose an alternative approach to species surrogacy, the “Best Practicable Aggregation of Species” (BestAgg), in which surrogates exulate from fixed taxonomic schemes. The approach uses null models from random aggregations of species to minimizing the number of surrogates without causing significant losses of information on community patterns. Surrogate types are then selected in order to maximize ecological information. We applied the approach to real case studies on natural and human‐driven gradients from marine benthic communities. Outcomes from BestAgg were also compared with those obtained using classic taxonomic surrogates. Results showed that BestAgg surrogates are effective in detecting community changes. In contrast to classic taxonomic surrogates, BestAgg surrogates allow retaining significantly higher information on species‐level community patterns than what is expected to occur by chance and a potential time saving during sample processing up to 25% higher. Our findings showed that BestAgg surrogates from a pilot study could be used successfully in similar environmental investigations in the same area, or for subsequent long‐term monitoring programs. BestAgg is virtually applicable to any environmental context, allowing exploiting multiple surrogacy schemes beyond stagnant perspectives strictly relying on taxonomic relatedness among species. This prerogative is crucial to extend the concept of species surrogacy to ecological traits of species, thus leading to ecologically meaningful surrogates that, while cost effective in reflecting community patterns, may also contribute to unveil underlying processes. A specific R code for BestAgg is provided.  相似文献   

19.
The stress‐gradient hypothesis (SGH) predicts a shift from predominant competition to facilitation as abiotic stress increases. Most empirical tests of the SGH have evaluated the interactions between a single or a few pairs of species, have not considered the effects of multiple stress factors, and have not explored these interactions at nested spatial scales. We sampled 63 0.25‐m2 plots, each subdivided into 100 5×5 cm and 25 10×10 cm sampling squares, in a semi‐arid Mediterranean environment to evaluate how co‐occurrence patterns among biological soil crusts (BSC)‐forming lichens changed along natural stress gradients driven by water and nutrient (N, P, K) availability. According to the SGH, we tested the hypothesis that the fine‐scale spatial arrangement of BSC‐forming lichens should shift from prevailing interspecific segregation to aggregation as abiotic stress increases. Co‐occurrence patterns ranged from significant species segregation to aggregation at the two spatial scales studied. When using the 5×5 cm grid, more plots showed significant species segregation than aggregation. At this sampling scale, co‐occurrence increased as water and nutrient availability decreased and increased, respectively. Small increases in soil pH promoted species co‐occurrence. Interspecific segregation was promoted as the cover of highly competitive species, such as Diploschistes diacapsis, increased. No significant relationships between co‐occurrence and the surrogates of abiotic stress were observed when data was arranged in a 10×10 cm grid. Our co‐occurrence analyses partially supported predictions from the SGH, albeit the results obtained were dependent on the type of abiotic stress and the spatial scale considered. They show the difficulties of predicting how co‐occurrence patterns change along complex stress gradients, and highlight the need of incorporating the effects of abiotic stress promoted by different resources, such as water and nutrients, into the conceptual framework of the SGH.  相似文献   

20.
Charismatic megafauna have been used as icons and financial drivers of conservation efforts worldwide given that they are useful surrogates for biodiversity in general. However, tests of this premise have been constrained by data limitations, especially at large scales. Here we overcome this problem by combining large-scale citizen-sourced data with intensive expert observations of two endangered charismatic species, Blakiston’s fish owl (forest specialist) and the red-crowned crane (wetland specialist). We constructed large-scale maps of species richness for 52 forest and 23 grassland/wetland bird species using hierarchical community modeling and citizen-sourced data at 1, 2, 5, and 10-km grid resolutions. We compared the species richness of forest and grassland/wetland birds between the breeding and non-breeding sites of the two charismatic birds at each of the four spatial resolutions, and then assessed the scale dependency of the biodiversity surrogates. Regardless of the habitat amounts, owl and crane breeding sites had higher forest and grassland/wetland bird species richness, respectively. However, this surrogacy was more effective at finer scales (1–2-km resolutions), which corresponds to the charismatic species’ home range sizes (up to 9.4 ± 2.0 km2 for fish owls, and 3–4 km2 for cranes). Species richness showed the highest spatial variations at 1–2-km resolutions. We suggest that the agreement of functional scales between surrogate species and broader biodiversity is essential for successful surrogacy, and that habitat conservation and restoration targeting multiple charismatic species with different specialties can complement to biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号