首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic disturbance has generated a significant loss of biodiversity worldwide and grazing by domestic herbivores is a contributing disturbance. Although the effects of grazing on plants are commonly explored, here we address the potential multi‐trophic effects on animal biodiversity (e.g. herbivores, pollinators and predators). We conducted a meta‐analysis on 109 independent studies that tested the response of animals or plants to livestock grazing relative to livestock excluded. Across all animals, livestock exclusion increased abundance and diversity, but these effects were greatest for trophic levels directly dependent on plants, such as herbivores and pollinators. Detritivores were the only trophic level whose abundance decreased with livestock exclusion. We also found that the number of years since livestock was excluded influenced the community and that the effects of grazer exclusion on animal diversity were strongest in temperate climates. These findings synthesise the effects of livestock grazing beyond plants and demonstrate the indirect impacts of livestock grazing on multiple trophic levels in the animal community. We identified the potentially long‐term impacts that livestock grazing can have on lower trophic levels and consequences for biological conservation. We also highlight the potentially inevitable cost to global biodiversity from livestock grazing that must be balanced against socio‐economic benefits.  相似文献   

2.
农业活动对生物多样性的影响   总被引:40,自引:3,他引:40  
农业生产活动如土地的农业利用、耕作、作物间套种植方式、放牧、农药化肥的使用以及农业动植物遗传改良(包括外来种引入)等是农业生产力提高的重要途径,同时也是影响生物多样性的重要因素之一。土地的不合理开发利用易导致生境破碎、生物多样性下降;大规模的机械耕作导致土壤动植物区系的变化,甚至某些物种的消失;农药(除草剂、杀虫剂等)的高度使用使非靶标动植物受到伤害;品种改良、外来种的引入以及远缘外源遗传物质的利用(如远缘杂交和DNA导入分子育种)在丰富了遗传多样性的同时导致农作物类型和品种的简单化、一些古老的地方种和农家种等传统资源丢失等;而一些合理的农业措施(间套作、实行有机农场等)将有利于生物多样性的保持。农业活动注重的是农业生产力的提高而往往忽视其对农业系统中野生动植物(包括有害和无害)的影响以及野生动植物在维持系统稳定和平衡的作用。本文论述农业活动对生物多样性的影响以及生物多样性保护对提高农业生产力的作用,启示人们采取合理的农业活动方式,合理管理有害生物,减少农业活动对生物多样性的负面影响。  相似文献   

3.
This paper incorporates the indigenous ecological knowledge (IEK) of the Maasai pastoralists and ecological methods to assess effects of grazing and cropping on rangeland biodiversity at macro‐ and micro‐landscape scales in northern Tanzania. The joint surveys with pastoralists identified indicator plant species and their associations with micro‐landscapes and livestock grazing suitability (i.e. for cattle and small ruminant grazing), while traditional calf‐pasture reserves (alalili pl. alalilia) were evaluated for preservation of rangeland biodiversity. The macro‐landscapes comprising the cool high plateau (osupuko pl. isipuki) and montane forest highland (endim) were included in the survey. At micro‐landscape scales, the osupuko was classified into uplands (orkung'u), slopes (andamata) and dry valley bottomlands (ayarata). The micro‐landscapes were assessed in terms of herbaceous plant species and woody species richness and risks of soil erosion. Biodiversity varied at both the macro‐ and micro‐landscape scales and in accordance with the land‐use types. Greater plant species diversity and less erosion risks were found in the pastoral landscapes than in the agro‐pastoral landscapes. The calf‐grazing pastures had greater herbaceous species richness than the non‐calf pastures, which in turn had more woody species. The study concludes that the indigenous systems of landscape classification provides a valuable basis for assessing rangeland biodiversity, which ecologists should incorporate into ecological surveys of the rangelands in East Africa in the future.  相似文献   

4.
The human impact on the African savanna is parcelling large native mammals into game reserves, with cattle and other livestock replacing these native mammals in the matrix surrounding these reserves. Concordant with this are other landscape changes such as fire maintenance within the reserve but no longer outside. How does this composite landscape change affect biodiversity, as represented by small animals such as grasshoppers? This question was addressed against the premise that grasshoppers have evolved in the context of native mammal ecology. One of the most significant aspects of this ecology is grazing and trampling by the large number of ungulates congregating at waterholes. The results clearly show that the grasshopper fauna is only marginally impoverished outside the reserve, and that cattle trampling and grazing (along with less fire) is a simulation of these impacts by native ungulates. As greatest grasshopper diversity is encouraged by some trampling and grazing, the presence of cattle in place of native mammals is not entirely adverse to biodiversity, as represented by grasshoppers.  相似文献   

5.
Ecological theory suggests that spatial distribution of biodiversity is strongly driven by community assembly processes. Thus the study of diversity patterns combined with null model testing has become increasingly common to infer assembly processes from observed distributions of diversity indices. However, results in both empirical and simulation studies are inconsistent. The aim of our study is to determine with simulated data which facets of biodiversity, if any, may unravel the processes driving its spatial patterns, and to provide practical considerations about the combination of diversity indices that would produce significant and congruent signals when using null models. The study is based on simulated species’ assemblages that emerge under various landscape structures in a spatially explicit individual‐based model with contrasting, predefined assembly processes. We focus on four assembly processes (species‐sorting, mass effect, neutral dynamics and competition colonization trade‐off) and investigate the emerging species’ distributions with varied diversity indices (alpha, beta and gamma) measured at different spatial scales and for different diversity facets (taxonomic, functional and phylogenetic). We find that 1) the four assembly processes result in distinct spatial distributions of species under any landscape structure, 2) a broad range of diversity indices allows distinguishing between communities driven by different assembly processes, 3) null models provide congruent results only for a small fraction of diversity indices and 4) only a combination of these diversity indices allows identifying the correct assembly processes. Our study supports the inference of assembly processes from patterns of diversity only when different types of indices are combined. It highlights the need to combine phylogenetic, functional and taxonomic diversity indices at multiple spatial scales to effectively infer underlying assembly processes from diversity patterns by illustrating how combination of different indices might help disentangling the complex question of coexistence.  相似文献   

6.
青藏高原高寒灌丛植被对长期放牧强度试验的响应特征   总被引:1,自引:1,他引:0  
在青藏高原中国科学院海北高寒草甸生态系统定位研究站对金露梅高寒灌丛草场植被开展了长期不同放牧强度试验,分别在短期(4年)、中期(11年)和长期(18年)放牧阶段研究不同放牧干扰强度对草地植物物种多样性、群落结构、地上生物量和草场质量的影响.研究表明,在不同放牧阶段,随着放牧强度增加植物群落的高度和盖度都降低.在中期放牧干扰阶段,物种多样性数和均匀度指数随着放牧强度增加呈现典型的单峰曲线模式;在长期放牧干扰阶段,随着放牧强度增加,占优势地位的灌木和禾草被典型杂类草替代,其中的重度放牧干扰简化了高寒灌丛植被群落结构,减少了地上现存生物量,特别是可食优良牧草生物量.植被对放牧的响应除了与放牧强度和放牧时间阶段密切相关外,还与该地区水热条件的变化有一定的相关性.针对长期放牧干扰的反应特性可将金露梅灌丛草场中植物划分为增加型、敏感型、忍耐型和无反应型4种类型.除了丰富度指数、多样性指数和均匀度指数外,其它一些特征参数并不支持著名的中度干扰假说.本研究发现,长期重度放牧促进了青藏高原高寒草地退化,适度放牧有利于高寒灌丛草场的生物多样性保护和牧草利用;"取半留半"的放牧原则在青藏高原草场放牧管理实践中值得推荐,它将有利于防止草场退化,提高牧草利用率和维持较高的生物多样性.  相似文献   

7.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

8.
Continuous livestock grazing can have negative effects on biodiversity and landscape function in arid and semi‐arid rangelands. Alternative grazing management practices, such as rotational grazing, may be a viable option for broad‐scale biodiversity conservation and sustainable pastoral management. This study compared ground cover, plant species composition and floristic and functional diversity along gradients of grazing intensity between a pastoral property rotationally grazed by goats and an adjacent nature reserve (ungrazed by commercial livestock) in semi‐arid south‐eastern Australia. Understorey plant species composition differed significantly between the rotationally grazed property and the nature reserve, with a greater proportion and frequency of palatable species recorded in the nature reserve. Understorey plant species richness, diversity, functional biodiversity measures and ground cover declined with increasing grazing pressure close to water points under commercial rotational grazing management. However, at a whole‐paddock scale, there were few differences in plant biodiversity and ground cover between the rotationally grazed property and the nature reserve, despite differences in overall plant species composition. Flexible, adaptive, rotational grazing should be investigated further for its potential to achieve both socio‐economic and biodiversity conservation outcomes in semi‐arid rangelands to complement existing conservation reserves.  相似文献   

9.
Grazing lands are the most degraded land use type in the world, particularly in arid and semiarid areas, as a result of improper human activities such as overgrazing coupled with drought. For restoration of degraded grazing lands, large-scale projects are implemented, which include extensive vegetation improvements (e.g., reseeding, weed control, shrub plantations, reforestations, etc.). Such interventions, apart from being very expensive, often create environmental problems. In situations where the abiotic function of the degraded grazing land has not been irreversibly damaged, application of appropriate grazing management is an ecologically viable solution to their restoration. This is especially necessary for grazed lands with a long history of grazing by large herbivores, including livestock. Excluding domestic animals from such ecosystems may lead to several ecological problems such as loss of biodiversity and devastating wildfires. Appropriate grazing management should include an adjusted stocking rate to the grazing capacity of the restored land, the right kind of animal species, and an appropriate grazing system. In addition, grazing management should be implemented on the basis of a plan that is part of the restoration project. It is concluded that grazing management should become a priority option in restoration of the biotic function of degraded grazing lands, especially in those that have had a long history with the presence of domestic animals.  相似文献   

10.
Summary In the fragmented agricultural landscapes of temperate southern Australia, broad‐scale revegetation is underway to address multiple natural resource management issues. In particular, commercially‐driven fodder shrub plantings are increasingly being established on non‐saline land to fill the summer‐autumn feed gap in grazing systems. Little is known of the contribution that these and other planted woody perennial systems make to biodiversity conservation in multifunctional landscapes. In order to address this knowledge gap, a study was conducted in the southern Murray Mallee region of South Australia. Selected ecological indicators, including plant and bird communities, were sampled in spring 2008 and autumn 2009 in five planted saltbush sites and nearby areas of remnant vegetation and improved pasture. In general, remnant vegetation sites had higher biodiversity values than saltbush and pasture sites. Saltbush sites contained a diverse range of plants and birds, including a number of threatened bird species not found in adjacent pasture sites. Plant and bird communities showed significant variation across saltbush, pasture and remnant treatments and significant differences between seasons. This study demonstrates that saltbush plantings can provide at least partial habitat for some native biota within a highly modified agricultural landscape. Further research is being conducted on the way in which biota, such as birds, use available resources in these dynamic ecosystems. An examination of the effects of grazing on biodiversity in saltbush would improve the ability of landholders and regional natural resource management agencies in making informed land management decisions.  相似文献   

11.
Small urban forest reserves in New Zealand have been shown to have value in conserving indigenous beetle diversity. However there is little information available on the ability of non‐native vegetation areas such as tree privet to support indigenous beetle assemblages. To investigate this for one site, ground‐living beetles were collected using pitfall traps over a year at a small urban forest of the invasive tree Ligustrum lucidum (tree privet) in Auckland, New Zealand. A total of 815 beetles were found, from 20 families and 42 relative taxonomic units. Using monthly data, there was no correlation between soil moisture and diversity index (P = 0.805) or species richness (P = 0.375). These results raise the question of whether urban patches of non‐native tree privet may have potential as reservoirs of beetle diversity, if only until they are replaced with native vegetation.  相似文献   

12.
Soil macroinvertebrates play an important role in sustaining production and biodiversity in Australia' s tropical savannas. For example, termites, through their foraging and nesting activities, recycle nutrients and carbon and produce soil pores that facilitate water infiltration. The challenge ahead is to quantitatively understand the relationships and processes that drive this. What roles do different species and functional groups of macroinvertebrates play in various landscape processes? What are the effects of different land management practices (e.g., domestic cattle grazing, fire) on these relationships, and the consequences for landscape health? This paper presents preliminary results from studies in northern Australia, that examine the effects of land condition and domestic cattle grazing on soil macroinvertebrates, and the potential for termites to be used as a tool to restore soil function in degraded areas. In northern Australia, increased degradation seems to be associated with declines in the diversity and activity of macroinvertebrates. Termites appear to be one of the most resilient groups, with some species capable of maintaining activity in degraded landscapes.  相似文献   

13.
Zagros forest in Iran has been heavily altered by anthropogenic disturbances such as farming, grazing and other activities. In this study, we first estimated the herbaceous plants coefficient of conservatism within this region. Forest integrity of different land uses was then assessed by common measures of plant diversity and the indices were specifically developed to estimate vegetation integrity (conservatism coefficient, floristic quality index and modified floristic quality index). As complementary approaches, some soil physiochemical properties were applied to judge forest integrity. A total of 81, 82, 88, native species were recorded in understory grazing (UG), abandoned fields (AF), and protected area (PA) land uses, respectively. Common species had higher abundance in AF land use, whereas specialized species were found in PA land use. Diversity indices and modified floristic quality index values were higher in AF land use compared to UG and PA land uses, and fisher alpha diversity index highlighted the significant differences in the plant diversity among land uses, while PA land use had high species richness with greater number of sensitive species and floristic quality index. Soils under PA land use showed the highest organic carbon, nitrogen and pH. Based on results, floristic quality index and mean coefficient of conservatism can be more informative than species-diversity measures in assessing floristic integrity and in contradiction to diversity indices, are accurate tools to determine differences in the integrity of land uses. Results indicate that PA land use have indeed progressed ecologically toward a vigorous ecosystem as observed by the development of its vegetation community.  相似文献   

14.
Abstract Functional integrity is the intactness of soil and native vegetation patterns and the processes that maintain these patterns. In Australia's rangelands, the integrity of these patterns and processes have been modified by clearing, grazing and fire. Intuitively, biodiversity should be strongly related to functional integrity; that is, landscapes with high functional integrity should maintain biodiversity, and altered, less functional landscapes may lose some biodiversity, defined here as the variety and abundance of the plants, animals and microorganisms of concern. Simple indicators of biodiversity and functional integrity are needed that can be monitored at a range of scales, from fine to coarse. In the present paper, we use examples, primarily from published work on Australia's rangeland, to document that at finer patch and hillslope scales several indicators of landscape functional integrity have been identified. These indicators, based on the quantity and quality of vegetation patches and interpatch zones, are related to biodiversity. For example, a decrease in the cover and width (quantity) and condition (quality) of vegetation patches, and an increase in bare soil (quantity of interpatch) near cattle watering points in a paddock are significantly related to declines in plant and grasshopper diversity. These vegetation patch‐cover and bare‐soil indicators have been monitored traditionally by field‐based methods, but new high‐resolution, remote‐sensing imagery can be used in specific rangeland areas for this fine‐scale monitoring. At intermediate paddock and small watershed scales, indicators that can be derived from medium‐resolution remote‐sensing are also needed for efficient monitoring of rangeland condition (i.e. functional integrity) and biodiversity. For example, 30–100‐m‐pixel Landsat imagery has been used to assess the condition of rangelands along grazing gradients extending from watering‐points. The variety and abundance of key taxa have been related to these gradients (the Biograze project). At still larger region and catchment scales, indicators of rangeland functional integrity can also be monitored by coarse‐resolution remote‐sensing and related to biodiversity. For example, the extent and greenness (condition) of different regional landscapes have been monitored with 1‐km‐pixel satellite imagery. This regional information becomes more valuable when it indicates differences as a result of land management. Finally, we discuss potential future developments that could improve proposed indicators of landscape functional integrity and biodiversity, thereby improving our ability to monitor rangelands effectively.  相似文献   

15.
Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai‐Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter‐ and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra‐ and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter‐ and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter‐ and intraspecific aggregation produces local spatial patterns that scale‐up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing.  相似文献   

16.
Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species‐rich semi‐natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on‐going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. It is a largely unresolved question to what degree current temperate grassland communities already reflect a decline of regional processes such as longer distance seed dispersal. Answering this question is challenging since it requires both a mechanistic approach to community dynamics and a sufficient data basis that allows identifying general patterns. Here, we present results of a local individual‐ and trait‐based community model that was initialized with plant functional types (PFTs) derived from an extensive empirical data set of species‐rich grasslands within the ‘Biodiversity Exploratories’ in Germany. Driving model processes included above‐ and belowground competition, dynamic resource allocation to shoots and roots, clonal growth, grazing, and local seed dispersal. To test for the impact of regional processes we also simulated seed input from a regional species pool. Model output, with and without regional seed input, was compared with empirical community response patterns along a grazing gradient. Simulated response patterns of changes in PFT richness, Shannon diversity, and biomass production matched observed grazing response patterns surprisingly well if only local processes were considered. Already low levels of additional regional seed input led to stronger deviations from empirical community pattern. While these findings cannot rule out that regional processes other than those considered in the modeling study potentially play a role in shaping the local grassland communities, our comparison indicates that European grasslands are largely isolated, i.e. local mechanisms explain observed community patterns to a large extent.  相似文献   

17.
S. K. Jain 《Economic botany》2000,54(4):459-470
Different human societies have different biodiversity around them; there is diversity in their food habits, ailments, occupations, daily routine, social customs, needs, and notions about natural phenomena. They have different domestic animals, and consequently, different veterinary diseases to manage. These circumstances have given rise to very diverse experiences among indigenous societies about plant wealth around them. Over generations, this has made very rich additions to the interrelationships between man and plant wealth around him. Faith, tradition, taboos and several such associations with forests and particular plant species have helped in conservation of plant diversity. The richness of plant diversity in any area, is not evaluated merely by the number of species occurring there, but by the intensity of associations and dependence of the indigenous communities on that plant wealth. Respect for this indigenous knowledge, and relationship helps in conservation.  相似文献   

18.
The conversion of natural, or seminatural, habitats to agricultural land and changes in agricultural land use are significant drivers of biodiversity loss. Within the context of land‐sharing versus land‐sparing debates, large‐scale commercial agriculture is known to be detrimental to biodiversity, but the effects of small‐scale subsistence farming on biodiversity are disputed. This poses a problem for sustainable land‐use management in the Global South, where approximately 30% of farmland is small‐scale. Following a rapid land redistribution program in Zimbabwe, we evaluated changes in avian biodiversity by examining richness, abundance, and functional diversity. Rapid land redistribution has, in the near term, resulted in increased avian abundance in newly farmed areas containing miombo woodland and open habitat. Conversion of seminatural ranched land to small‐scale farms had a negative impact on larger‐bodied birds, but species richness increased, and birds in some feeding guilds maintained or increased abundance. We found evidence that land‐use change caused a shift in the functional traits of the communities present. However, functional analyses may not have adequately reflected the trait filtering effect of land redistribution on large species. Whether newly farmed landscapes in Zimbabwe can deliver multiple benefits in terms of food production and habitat for biodiversity in the longer term is an open question. When managing agricultural land transitions, relying on taxonomic measures of diversity, or abundance‐weighted measures of function diversity, may obscure important information. If the value of smallholder‐farmed land for birds is to be maintained or improved, it will be essential to ensure that a wide array of habitat types is retained alongside efforts to reduce hunting and persecution of large bird species.  相似文献   

19.
There is a long tradition of grazing by semi‐domestic reindeer and sheep in alpine and sub‐alpine Scandinavian habitats, but present management regimes are questioned from a conservation point of view. In this review we discuss plant diversity patterns in the Scandinavian mountains in a global, regional and local perspective. The main objective was to identify processes that influence diversity at different spatial scales with a particular focus on grazing. In a global perspective the species pool of the Scandinavian mountains is limited. partly reflecting the general latitudinal decline of species but also historical and ecological factors operating after the latest glaciation. At the local scale, both productivity and disturbance are primary factors structuring diversity, but abiotic factors such as soil pH, snow distribution and temperature are also important. Although evidence is scarce, grazing favours local species richness in productive habitats, whereas species richness decreases with grazing when productivity is low. Regional patterns of plant diversity is set by, 1) the species pool. 2) the heterogeneity and fragmentation of communities, and 3) local diversity of each plant community. We suggest that local shifts in community composition depend both on the local grazing frequency and the return‐time of the plant community after a grazing session. In addition, an increasing number of grazing‐modified local patches homogenises the vegetation and is likely to reduce the regional plant diversity. The time scale of local shifts in community composition depends on plant colonisation and persistence, From a mechanistic point of view, diversity patterns at a regional scale also depend on the regional dynamics of single species. Colonisation is usually a slow and irregular process in alpine environments, whereas the capacity for extended local persistence is generally high. Although the poor knowledge of plant regional dynamics restricts our understanding of how grazing influences plant diversity, we conclude that grazing is a key process for maintaining biodiversity in the Scandinavian mountains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号