首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average = 0.154 and max = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population.  相似文献   

2.
Captive breeding and the reintroduction of Mexican and red wolves   总被引:2,自引:0,他引:2  
Mexican and red wolves were both faced with extinction in the wild until captive populations were established more than two decades ago. These captive populations have been successfully managed genetically to minimize mean kinship and retain genetic variation. Descendants of these animals were subsequently used to start reintroduced populations, which now number about 40-50 Mexican wolves in Arizona and New Mexico and about 100 red wolves in North Carolina. The original captive Mexican wolf population was descended from three founders. Merging this lineage with two other captive lineages, each with two founders, has been successfully carried out in the captive population and is in progress in the reintroduced population. This effort has resulted in increased fitness of cross-lineage wolves, or genetic rescue, in both the captive and reintroduced populations. A number of coyote-red wolf hybrid litters were observed in the late 1990s in the reintroduced red wolf population. Intensive identification and management efforts appear to have resulted in the elimination of this threat. However, population reintroductions of both Mexican and red wolves appear to have reached numbers well below the generally recommended number for recovery and there is no current effort to re-establish other populations.  相似文献   

3.
The critically endangered red wolf (Canis rufus) has been subject to a strictly managed captive breeding program for three decades. A retrospective demographic analysis of the captive population was performed based on data from the red wolf studbook. Data analyses revealed a decrease in the effective population size relative to the total population size, and changes in age structure and inbreeding coefficients over time. To varying degrees, the probability of successful breeding and litter sizes declined in association with increasing dam age and sire inbreeding coefficients. Neonate survival also declined with increasing dam age. Recent changes in strategies regarding breed-pair recommendations have resulted in moderate increases in reproductive success. Zoo Biol 28:214–229, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

4.
Captive breeding has become an important tool in species conservation programmes. Current management strategies for ex situ populations are based on theoretical models, which have mainly been tested in model species or assessed using studbook data. During recent years an increasing number of molecular genetic studies have been published on captive populations of several endangered species. However, a comprehensive analysis of these studies is still outstanding. Here, we present a review of the published literature on ex situ conservation genetics with a focus on molecular studies. We analysed 188 publications which either presented empirical studies using molecular markers (105), studbook analyses (26), theoretical work (38), or tested the genetic effects of management strategies using model species (19). The results show that inbreeding can be minimized by a thorough management of captive populations. There seems to be a minimum number of founders (15) and a minimum size of a captive population (100) necessary in order to minimize a loss of genetic diversity. Optimally, the founders should be unrelated and new founders should be integrated into the captive population successively. We recommend that genetic analyses should generally precede and accompany ex situ conservation projects in order to avoid inbreeding and outbreeding depression. Furthermore, many of the published studies do not provide all the relevant parameters (founder size, captive population size, Ho, He, inbreeding coefficients). We, therefore, propose that a general standard for the presentation of genetic studies should be established, which would allow integration of the data into a global database.  相似文献   

5.
The ultimate goal of the Mexican gray wolf Canis lupus baileyi captive management program is reintroduction of healthy individuals into wild habitats. To this end, zoo population managers work to provide not only for the physical well-being but also for the genetic health of these animals. However, the very limited genetic founder base, exacerbated by breeding within three distinct lineages, resulted in very high coefficients of inbreeding. Because support for measurable levels of inbreeding depression in the captive wolf population, as defined by reductions in common fitness measures such as juvenile survival or reproductive success, has been weak, we investigated the potential effects on male reproductive capacity. We analyzed semen samples from wolves from all three lineages and compared them with samples from subsequent lineage crosses and from generic gray wolves. We not only found a significant effect of inbreeding on sperm quality but we related both inbreeding and sperm quality to reproductive success. Samples from male offspring of lineage crosses, with inbreeding coefficients of zero were similar in quality to those from generic gray wolves. However, samples from a limited number of offspring from back-crosses were of extremely poor quality. Although it is reassuring that sperm quality was so much improved in male offspring of lineage crosses, the concomitant reduction in inbreeding coefficient does not eliminate the potentially deleterious alleles. Our results demonstrate that sperm quality is an important indicator of fertility and reproductive success in Mexican wolves. In addition, our data lend further support to the presence of inbreeding depression in this taxon.  相似文献   

6.
The South China tiger (Panther tigris amoyensis) is critically endangered with 73 remaining individuals living in captivity, all derived from six wild founders since 1963. The population shows a low level of juvenile survivorship and reproductive difficulties, and faces a huge conservation challenge. In this study, inbreeding depression and genetic diversity decline were examined by using pedigree data and 17 microsatellites. The constant B, which is related to the number of lethal equivalents, was estimated to be 0 for the offspring of noninbred parents, but was >0 for the offspring of inbred parents and for all offspring. Percentage of successfully breeding tigers inversely correlated with inbreeding level (r = −0.626, α = 0.05). Taken together, these findings suggest the population is suffering from inbreeding depression in juvenile survivorship and fecundity. No significant correlation was detectable for the mean litter size with f of either dams (r = −0.305, α = 0.46) or kittens (r = 0.105, α = 0.71), indicating litter size was not strongly subject to inbreeding depression. The average number of alleles per locus was 4.24 ± 1.03 (SE), but effective number of alleles was only 2.53 ± 0.91. Twenty-one alleles carried by early breeders at 13 loci were absent in the present breeders and potential breeders. Multilocus heterozygosity was inversely correlated with inbreeding levels (r = −0.601, α = 0.004). These findings suggest rapid allelic diversity loss is occurring in this small captive population and that heterozygosity is being lost as it becomes more inbred. Our phylogenetic analysis supports past work indicating introgression from northern Indochinese tigers in the population. As no wild representatives of the South China tiger can be added to the captive population, we may consider the alternate scenario of further introgression in the interest of countering inbreeding depression and declining genetic diversity.  相似文献   

7.
Although inbreeding can reduce individual fitness and contribute to population extinction, gene flow between inbred but unrelated populations may overcome these effects. Among extant Mexican wolves (Canis lupus baileyi), inbreeding had reduced genetic diversity and potentially lowered fitness, and as a result, three unrelated captive wolf lineages were merged beginning in 1995. We examined the effect of inbreeding and the merging of the founding lineages on three fitness traits in the captive population and on litter size in the reintroduced population. We found little evidence of inbreeding depression among captive wolves of the founding lineages, but large fitness increases, genetic rescue, for all traits examined among F1 offspring of the founding lineages. In addition, we observed strong inbreeding depression among wolves descended from F1 wolves. These results suggest a high load of deleterious alleles in the McBride lineage, the largest of the founding lineages. In the wild, reintroduced population, there were large fitness differences between McBride wolves and wolves with ancestry from two or more lineages, again indicating a genetic rescue. The low litter and pack sizes observed in the wild population are consistent with this genetic load, but it appears that there is still potential to establish vigorous wild populations.  相似文献   

8.
We used the housefly (Musca domestica L.) as an experimental model to compare two strategies for the captive breeding of an endangered species: a strategy to minimize inbreeding and balance founder contributions (termed “MAI” for “maximum avoidance of inbreeding”) versus a scheme to select against less fit individuals (disregarding relatedness). By balancing the initial founder contributions, the MAI protocol was analogous to methods for minimizing kinship. In both breeding strategies, the population growth rate was limited to a maximum increase of 50% per generation. Five replicate populations, each starting with five male–female pairs, were subjected to five generations of captive breeding. Six generations of simulated “release into the wild” allowed ad lib breeding with less restrictive population growth potential, in either a benign or stressful environment (i.e., constant or variable temperature). Population size, fecundity, and fertility were assayed throughout the experiment, with juvenile‐to‐adult survival assayed in the second phase of the project. Allozyme assays determined the resultant inbreeding coefficients from the captive breeding schemes. The MAI breeding scheme resulted in significantly lower inbreeding coefficients and higher fitness, with qualitatively reduced extinction potential, most notable in the stressful environment. Spontaneous fitness rebounds suggested that the MAI strategy facilitated some form of purging of inbreeding depression effects. Importantly, the advantages of the MAI strategy were difficult to detect during the captive breeding phase, suggesting that the long‐term advantages of the MAI approach could be underestimated in actual breeding programs. We concur with the common recommendation of maximum avoidance of inbreeding at least for systems with low reproductive potential. Zoo Biol 0:1–18, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

9.
An ever-increasing number of species are suffering marked reductions in population size as a consequence of human activities. To understand the impact of these changes it is essential to assess how small population size affects individual fitness and the viability of populations. This issue acquires special relevance among endangered species in which numbers have decreased to such an extent that captive breeding must be established with a few founders. A major risk associated with small population size is inbreeding depression. The effects of inbreeding upon male reproductive traits are the subject of an ongoing controversy, since the evidence linking lack of genetic variability and poor ejaculate quality at the population level has been criticized recently by several authors. We report that among Gazella cuvieri males, inbreeding coefficient shows a strong inverse relationship with ejaculate quality. Furthermore, the degree of fluctuating asymmetry is positively related to the coefficient of inbreeding and negatively related to the proportion of normal sperm, suggesting that it is a reliable indicator of genetic stress and of ejaculate quality.  相似文献   

10.
Mate selection for inbreeding avoidance is documented in several taxa. In mammals, most conclusive evidence comes from captive experiments that control for the availability of mates and for the level of genetic relatedness between mating partners. However, the importance of mate selection for inbreeding avoidance as a determinant of siring success in the wild has rarely been addressed. We followed the reproduction of a wild population of eastern chipmunks (Tamias striatus) during five breeding seasons between 2006 and 2009. Using molecular tools and parentage assignment methods, we found that multiple paternity (among polytocous litters) varied from 25% in an early-spring breeding season when less than a quarter of females in the population were reproductively active to 100% across three summer breeding seasons and one spring breeding season when more than 85% of females were reproductively active. Genetically related parents were common in this population and produced less heterozygous offspring. Furthermore, litters with multiple sires showed a higher average relatedness among partners than litters with only a single sire. In multiply sired litters, however, males that were more closely related to their partners sired fewer offspring. Our results corroborate findings from captive experiments and suggest that selection for inbreeding avoidance can be an important determinant of reproductive success in wild mammals.  相似文献   

11.
Measurements of size and asymmetry in morphology might provide early indications of damaging effects of inbreeding or other genetic changes in conservation breeding programs. We examined the effects of inbreeding on size and fluctuating asymmetry (FA) in skull and limb bone measurements in experimental populations of three subspecies of Peromyscus polionotus mice that had previously been shown to suffer significant reductions in reproductive success when inbred. Inbreeding caused significant depression in mean size in two of the subspecies (P. p. rhoadsi and P. p. subgriseus), but the effects were smaller in the third (P. p. leucocephalus). Inbreeding caused an increase in FA of just one of eight bilateral traits in one subspecies (P. p. rhoadsi). Inbreeding depression in size was more easily detected than the effects of inbreeding on FA. FA may be much less sensitive to inbreeding and other stresses than are more direct measures of fitness such as reproductive output and body mass growth rate. Given the large sample sizes and statistical complexity required to assess changes to typically very small levels of FA in captive populations, FA will not likely provide a useful measure of inbreeding depression in captive populations. Zoo Biol. 32:125‐133, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Kevin Willis 《Zoo biology》1993,12(2):161-172
Whether to incorporate animals with unknown ancestries as founders into scientifically managed captive breeding programs, can be a difficult decision. If the animals are offspring of known founders, their inclusion in the breeding program will result in an increased incidence of inbreeding in the captive population. If the animals are additional founders, excluding them from the breeding program will result in the loss of valuable genetic variation. In general, the practice in scientifically managed captive breeding programs is to exclude animals with unknown ancestries to avoid possible inbreeding. A method of estimating the cost of making an incorrect decision on whether to use animals of unknown ancestry as founders both in terms of lost genetic variation and increased inbreeding is presented. It was determined that the loss of genetic variation resulting from excluding founders is always greater than the loss of genetic variation caused by unequal founder line representation resulting from including related animals, as if they were founders. In addition, the increased rate of accumulation of inbreeding resulting from excluding founders will eventually overcome the initial inbreeding resulting from including related animals. However, in some cases, it will take a substantial number of generations for this to occur, and the benefits of possible lowered future expected inbreeding may never be realized. The decision concerning whether to use animals with unknown ancestry should, therefore, be based on the estimated relative costs of making an error, in terms of both lost genetic variation and expected future inbreeding, rather than on avoiding the immediate possibility of increased inbreeding alone. Two examples using studbook data are given to show how this method can be practically applied to the management of captive populations. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Inbreeding depression of an aspect of fitness is observed in many insects, but the traits that are of importance for inbreeding depression of fitness remain poorly understood. Here the magnitude of inbreeding depression of fitness-related traits in the development and adult stages was measured in a captive population of the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Beetles produced by full-sib matings had 8% lower survival in the development stage than did beetles produced by unrelated matings. Although inbred and outbred offspring did not differ in body size after emergence, inbred offspring took 2–3% longer to develop to emergence. This indicates inbreeding depression of growth rate. At the adult stage, inbreeding had no significant effect on longevity, however lifetime offspring production was reduced by 11%. Thus, the magnitude of inbreeding depression was relatively large for offspring production. This suggests inbreeding depression of fitness manifests, to a particularly significant extent, in reduced productivity. This study shows the C. chinensis population, which has been in captivity for more than 100 generations, harbors genetic loads.  相似文献   

14.
B. Meier 《Human Evolution》1989,4(2-3):223-229
Extinction of small, closed populations in captivity as well as in the wild is believed to be nearly inevitable, because inbreeding will adversely effect reproductive success, mortality, sex ratio and also the susceptibility to epidemic diseases and environmental stress. An ever increasing number of primate species exist only in small isolated populations, which contain only a part of the original genetic variability. In captive breeding programs research about genetic management strategies is, therefore, of essential importance. In 1980 we imported 9Loris tardigrdus nordicus (4 females, 5 males) from NE-Sri Lanka. The founders came from one natural breeding population. All sexual mature females are breeding. Up to now the colony contains 36 living individuals. The main goal of our long-term genetic management plan was to minimize inbreeding and to preserve the genetic diversity. Therefore, we try to pass the founder bottleneck rapidly by enlarging the population to a desired minimum population size of 25 pairs and to equalize the founder representation within any generation. The need to control the spread of sublethal genes, introduced by one of the founders, conflicts directly with the aim of equalizing the founder representation. A solution of this problem is discussed. To produce a sufficiently large population we intend to give animals to other institutions and to build up an exchange-system for offspring individuals, which should lead to an international studbook.  相似文献   

15.
Although inbreeding is commonly known to depress individual fitness, the severity of inbreeding depression varies considerably across species. Among the factors contributing to this variation, family interactions, life stage and sex of offspring have been proposed, but their joint influence on inbreeding depression remains poorly understood. Here, we demonstrate that these three factors jointly shape inbreeding depression in the European earwig, Forficula auricularia. Using a series of cross‐breeding, split‐clutch and brood size manipulation experiments conducted over two generations, we first showed that sib mating (leading to inbred offspring) did not influence the reproductive success of earwig parents. Second, the presence of tending mothers and the strength of sibling competition (i.e. brood size) did not influence the expression of inbreeding depression in the inbred offspring. By contrast, our results revealed that inbreeding dramatically depressed the reproductive success of inbred adult male offspring, but only had little effect on the reproductive success of inbred adult female offspring. Overall, this study demonstrates limited effects of family interactions on inbreeding depression in this species and emphasizes the importance of disentangling effects of sib mating early and late during development to better understand the evolution of mating systems and population dynamics.  相似文献   

16.
Ex situ management is an important conservation tool that allows the preservation of biological diversity outside natural habitats while supporting survival in the wild. Captive breeding followed by re‐introduction is a possible approach for endangered species conservation and preservation of genetic variability. The Cayman Turtle Centre Ltd was established in 1968 to market green turtle (Chelonia mydas) meat and other products and replenish wild populations, thought to be locally extirpated, through captive breeding. We evaluated the effects of this re‐introduction programmme using molecular markers (13 microsatellites, 800‐bp D‐loop and simple tandem repeat mitochondrial DNA sequences) from captive breeders (N = 257) and wild nesting females (N = 57) (sampling period: 2013–2015). We divided the captive breeders into three groups: founders (from the original stock), and then two subdivisions of F1 individuals corresponding to two different management strategies, cohort 1995 (“C1995”) and multicohort F1 (“MCF1”). Loss of genetic variability and increased relatedness was observed in the captive stock over time. We found no significant differences in diversity among captive and wild groups, and similar or higher levels of haplotype variability when compared to other natural populations. Using parentage and sibship assignment, we determined that 90% of the wild individuals were related to the captive stock. Our results suggest a strong impact of the re‐introduction programmme on the present recovery of the wild green turtle population nesting in the Cayman Islands. Moreover, genetic relatedness analyses of captive populations are necessary to improve future management actions to maintain genetic diversity in the long term and avoid inbreeding depression.  相似文献   

17.
The main goal of ex situ conservation programs is to improve the chances of long term survival of natural populations by founding and managing captive colonies that can serve as a source of individuals for future reintroductions or to reinforce existing populations. The degree in which a captive breeding program has captured the genetic diversity existing in the source wild population has seldom been evaluated. In this study we evaluate the genetic diversity in wild and captive populations of the Iberian wolf, Canis lupus signatus, in order to assess how much genetic diversity is being preserved in the ongoing ex situ conservation program for this subspecies. A sample of domestic dogs was also included in the analysis for comparison. Seventy-four wolves and 135 dogs were genotyped at 13 unlinked microsatellite loci. The results show that genetic diversity in Iberian wolves is comparable in magnitude to that of other wild populations of gray wolf. Both the wild and the captive Iberian wolf populations have a similarly high genetic diversity indicating that no substantial loss of diversity has occurred in the captive-breeding program. The effective number of founders of the program was estimated as ∼ ∼16, suggesting that all founders in the studbook pedigree were genetically independent. Our results emphasize also the genetic divergence between wolves and domestic dogs and indicate that our set of 13 microsatellite loci provide a powerful diagnostic test to distinguish wolves, dogs and their hybrids.  相似文献   

18.
Sexual selection is often prevented during captive breeding in order to maximize effective population size and retain genetic diversity. However, enforcing monogamy and thereby preventing sexual selection may affect population fitness either negatively by preventing the purging of deleterious mutations or positively by reducing sexual conflicts. To better understand the effect of sexual selection on the fitness of small populations, we compared components of female fitness and the expression of male secondary sexual characters in 19 experimental populations of guppies (Poecilia reticulata) maintained under polygamous or monogamous mating regimes over nine generations. In order to generate treatments that solely differed by their level of sexual selection, the middle‐class neighbourhood breeding design was enforced in the monogamous populations, while in the polygamous populations, all females contributed similarly to the next generation with one male and one female offspring. This experimental design allowed potential sexual conflicts to increase in the polygamous populations because selection could not operate on adult‐female traits. Clutch size and offspring survival showed a weak decline from generation to generation but did not differ among treatments. Offspring size, however, declined across generations, but more in monogamous than polygamous populations. By generation eight, orange‐ and black‐spot areas were larger in males from the polygamous treatment, but these differences were not statistically significant. Overall, these results suggest that neither sexual conflict nor the purging of deleterious mutation had important effects on the fitness of our experimental populations. However, only few generations of enforced monogamy in a benign environment were sufficient to negatively affect offspring size, a trait potentially crucial for survival in the wild. Sexual selection may therefore, under certain circumstances, be beneficial over enforced monogamy during captive breeding.  相似文献   

19.
For threatened species with small captive populations, it is advisable to incorporate conservation management strategies that minimize inbreeding in an effort to avoid inbreeding depression. Using multilocus microsatellite genotype data, we found a significant negative relationship between genetic relatedness (inbreeding) and reproductive success (fitness) in a captive population of the critically endangered Black Stilt or KakīHimantopus novaezelandiae. In an effort to avoid inbreeding depression in this iconic New Zealand endemic, we recommend re‐pairing closely related captive birds with less related individuals and pairing new captive birds with distantly related individuals.  相似文献   

20.
Inbreeding and the loss of genetic diversity may lower fitness and reduce the potential for a population to adapt to changing environments. In small populations, for example in captive populations or populations of endangered species, this can have considerable consequences for their survival. We investigated the effects of inbreeding on infant mortality in the world captive population of bonobos Pan paniscus . Using a combination of studbook data and high-quality pedigree data from genotyped individuals, inbreeding information was available for 142 captive-born individuals. For the determination of paternities that were unresolved in the studbook, nuclear microsatellite DNA was amplified from hair and blood samples using the Great Ape Kit and PowerPlex® 16 System. In total, 54 bonobos (17 offspring and their putative parents) were genotyped at eight tetranucleotide repeat microsatellite loci. Inbreeding coefficients were calculated for each individual for whom paternity was confirmed by either studbook data or DNA analysis. We found significantly higher infant mortality in inbred offspring compared with non-inbred offspring, suggesting that inbreeding reduces infant survival in captive bonobos. In addition, we argue that the total magnitude of inbreeding depression is probably underestimated in this captive population. In conclusion, even though the breeding programme of captive bonobos is aimed at avoiding inbreeding, closely related individuals do occasionally produce offspring that do show inbreeding depression. There is, however, no indication that this currently threatens the long-time survival of the captive population of bonobos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号