首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In tropical Africa, where malaria is highly endemic, low grade infections are asymptomatic and the diagnosis of clinical malaria is usually based on parasite density. Here we investigate how changes in malaria control and endemicity modify diagnostic criteria of Plasmodium falciparum attacks.

Methods and Findings

Parasitological and clinical data from the population of Dielmo, Senegal, monitored during 20 years, are analyzed in a random-effect logistic regression model to investigate the relationship between the level of parasitemia and risk of fever. Between 1990 and 2010, P. falciparum prevalence in asymptomatic persons declined from 85% to 1% in children 0–3 years and from 34% to 2% in adults ≥50 years. Thresholds levels of parasitemia for attributing fever episodes to malaria decreased by steps in relation to control policies. Using baseline threshold during following periods underestimated P. falciparum attacks by 9.8–20.2% in children and 18.9–40.2% in adults. Considering all fever episodes associated with malaria parasites as clinical attacks overestimated P. falciparum attacks by 42.2–68.5% in children and 45.9–211.7% in adults.

Conclusions

Malaria control modifies in all age-groups the threshold levels of parasitemia to be used for the assessment of malaria morbidity and to guide therapeutic decisions. Even under declining levels of malaria endemicity, the parasite density method must remain the reference method for distinguishing malaria from other causes of fever and assessing trends in the burden of malaria.  相似文献   

2.
In recent years, rapid diagnostic tests (RDTs) have been widely used for malaria detection, primarily because of their simple operation, fast results, and straightforward interpretation. The Asan EasyTest™ Malaria Pf/Pan Ag is one of the most commonly used malaria RDTs in several countries, including Korea and India. In this study, we tested the diagnostic performance of this RDT in Uganda to evaluate its usefulness for field diagnosis of malaria in this country. Microscopic and PCR analyses, and the Asan EasyTest™ Malaria Pf/Pan Ag rapid diagnostic test, were performed on blood samples from 185 individuals with suspected malaria in several villages in Uganda. Compared to the microscopic analysis, the sensitivity of the RDT to detect malaria infection was 95.8% and 83.3% for Plasmodium falciparum and non-P. falciparum, respectively. Although the diagnostic sensitivity of the RDT decreased when parasitemia was ≤500 parasites/µl, it showed 96.8% sensitivity (98.4% for P. falciparum and 93.8% for non-P. falciparum) in blood samples with parasitemia ≥100 parasites/µl. The specificity of the RDT was 97.3% for P. falciparum and 97.3% for non-P. falciparum. These results collectively suggest that the accuracy of the Asan EasyTest™ Malaria Pf/Pan Ag makes it an effective point-of-care diagnostic tool for malaria in Uganda.  相似文献   

3.
4.
Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/µL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.  相似文献   

5.
Differentiation of infectious causes in severely ill children is essential but challenging in sub- Saharan Africa. The aim of the study was to determine clinical indicators that are able to identify bacterial co-infections in P. falciparum infected children in rural Ghana. In total, 1,915 severely ill children below the age of 15 years were recruited at Agogo Presbyterian Hospital in Ghana between May 2007 and February 2011. In 771 (40%) of the children malaria parasites were detected. This group was analyzed for indicators of bacterial co-infections using bivariate and multivariate regression analyses with 24 socio-economic variables, 16 terms describing medical history and anthropometrical information and 68 variables describing clinical symptoms. The variables were tested for sensitivity, specificity, positive predictive value and negative predictive value. In 46 (6.0%) of the children with malaria infection, bacterial co-infection was detected. The most frequent pathogens were non-typhoid salmonellae (45.7%), followed by Streptococcus spp. (13.0%). Coughing, dehydration, splenomegaly, severe anemia and leukocytosis were positively associated with bacteremia. Domestic hygiene and exclusive breastfeeding is negatively associated with bacteremia. In cases of high parasitemia (>10,000/μl), a significant association with bacteremia was found for splenomegaly (OR 8.8; CI 1.6–48.9), dehydration (OR 18.2; CI 2.0–166.0) and coughing (OR 9.0; CI 0.7–118.6). In children with low parasitemia, associations with bacteremia were found for vomiting (OR 4.7; CI 1.4–15.8), severe anemia (OR 3.3; CI 1.0–11.1) and leukocytosis (OR 6.8 CI 1.9–24.2). Clinical signs of impaired microcirculation were negatively associated with bacteremia. Ceftriaxone achieved best coverage of isolated pathogens. The results demonstrate the limitation of clinical symptoms to determine bacterial co-infections in P. falciparum infected children. Best clinical indicators are dependent on the parasitemia level. Even with a moderate sensitivity of >60%, only low positive predictive values can be obtained due to low prevalence of bacteremia. Rapid testing for distinguishing parasitemia and bacteremia is essential.  相似文献   

6.
Plasmodium vivax infections remain a major source of malaria-related morbidity and mortality. Early and accurate diagnosis is an integral component of effective malaria control programs. Conventional molecular diagnostic methods provide accurate results but are often resource-intensive, expensive, have a long turnaround time and are beyond the capacity of most malaria-endemic countries. Our laboratory has recently developed a new platform called RealAmp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of malaria parasites. Here we describe new primers for the detection of P. vivax using the RealAmp method. Three pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the P. vivax genome. The amplification was carried out at 64°C using SYBR Green or SYTO-9 intercalating dyes for 90 minutes with the tube scanner set to collect fluorescence signals at 1-minute intervals. Clinical samples of P. vivax and other human-infecting malaria parasite species were used to determine the sensitivity and specificity of the primers by comparing with an 18S ribosomal RNA-based nested PCR as the gold standard. The new set of primers consistently detected laboratory-maintained isolates of P. vivax from different parts of the world. The primers detected P. vivax in the clinical samples with 94.59% sensitivity (95% CI: 87.48–98.26%) and 100% specificity (95% CI: 90.40–100%) compared to the gold standard nested-PCR method. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting P. vivax.  相似文献   

7.
Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.  相似文献   

8.

Background

Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings.

Methods

Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec’s Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system.

Results

The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5–99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively.

Conclusion

The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention.  相似文献   

9.
10.
11.

Background

In 2010, the World Health Organization revised guidelines to recommend diagnosis of all suspected malaria cases prior to treatment. There has been no systematic assessment of malaria test uptake for pediatric fevers at the population level as countries start implementing guidelines. We examined test use for pediatric fevers in relation to malaria endemicity and treatment-seeking behavior in multiple sub-Saharan African countries in initial years of implementation.

Methods and Findings

We compiled data from national population-based surveys reporting fever prevalence, care-seeking and diagnostic use for children under five years in 13 sub-Saharan African countries in 2009–2011/12 (n = 105,791). Mixed-effects logistic regression models quantified the influence of source of care and malaria endemicity on test use after adjusting for socioeconomic covariates. Results were stratified by malaria endemicity categories: low (PfPR2–10<5%), moderate (PfPR2–10 5–40%), high (PfPR2–10>40%). Among febrile under-fives surveyed, 16.9% (95% CI: 11.8%–21.9%) were tested. Compared to hospitals, febrile children attending non-hospital sources (OR: 0.62, 95% CI: 0.56–0.69) and community health workers (OR: 0.31, 95% CI: 0.23–0.43) were less often tested. Febrile children in high-risk areas had reduced odds of testing compared to low-risk settings (OR: 0.51, 95% CI: 0.42–0.62). Febrile children in least poor households were more often tested than in poorest (OR: 1.63, 95% CI: 1.39–1.91), as were children with better-educated mothers compared to least educated (OR: 1.33, 95% CI: 1.16–1.54).

Conclusions

Diagnostic testing of pediatric fevers was low and inequitable at the outset of new guidelines. Greater testing is needed at lower or less formal sources where pediatric fevers are commonly managed, particularly to reach the poorest. Lower test uptake in high-risk settings merits further investigation given potential implications for diagnostic scale-up in these areas. Findings could inform continued implementation of new guidelines to improve access to and equity in point-of-care diagnostics use for pediatric fevers.  相似文献   

12.

Background

In Sub-Saharan African countries, including Ethiopia, malaria in pregnancy is a major public health threat which results in significant morbidities and mortalities among pregnant women and their fetuses. In malaria endemic areas, Plasmodium infections tend to remain asymptomatic yet causing significant problems like maternal anemia, low birth weight, premature births, and still birth. This study was conducted to determine the prevalence and predictors of asymptomatic Plasmodium infection among pregnant women in the rural surroundings of Arba Minch Town, Southern Ethiopia.

Methods

A community based cross-sectional study comprising multistage sampling was conducted between April and June, 2013. Socio-demographic data were collected by using a semi-structured questionnaire. Plasmodium infection was diagnosed by using Giemsa-stained blood smear microscopy and a rapid diagnostic test (SD BIOLINE Malaria Ag Pf/Pv POCT, standard diagnostics, inc., Korea).

Results

Of the total 341 pregnant women participated in this study, 9.1% (31/341) and 9.7% (33/341) were confirmed to be infected with Plasmodium species by microscopy and rapid diagnostic tests (RDTs), respectively. The geometric mean of parasite density was 2392 parasites per microliter (μl); 2275/ μl for P. falciparum and 2032/ μl for P. vivax. Parasitemia was more likely to occur in primigravidae (Adjusted odds ratio (AOR): 9.4, 95% confidence interval (CI): 4.3–60.5), secundigravidae (AOR: 6.3, 95% CI: 2.9–27.3), using insecticide treated bed net (ITN) sometimes (AOR: 3.2, 95% CI: 1.8- 57.9), not using ITN at all (AOR: 4.6, 95% CI: 1.4–14.4) compared to multigravidae and using ITN always, respectively.

Conclusion

Asymptomatic malaria in this study is low compared to other studies’ findings. Nevertheless, given the high risk of malaria during pregnancy, pregnant women essentially be screened for asymptomatic Plasmodium infection and be treated promptly via the antenatal care (ANC) services.  相似文献   

13.
Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a ‘malaria mutator’), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3′ → 5′ exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175–178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.  相似文献   

14.

Background

Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.

Methods

A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.

Results

The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.

Conclusions

A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread to this location from its site of origin in western Cambodia. Resistance containment efforts are underway in Myanmar.

Trial Registration

Australian New Zealand Clinical Trials Registry ACTRN12610000896077  相似文献   

15.
Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden biomass greatest in severe disease and capable of mediating systemic inflammatory pathology. The lack of association between total parasite biomass and endothelial activation is consistent with accumulation in parts of the circulation devoid of endothelium. Endothelial activation, associated with circulating parasites, and systemic inflammation may contribute to pathology in vivax malaria, with microvascular dysfunction likely contributing to impaired tissue perfusion.  相似文献   

16.
17.

Background

There is a paucity of data on malaria among hospitalized children in malaria endemic areas. We determined the prevalence, presentation and treatment outcomes of malaria and anemia among children in two hospitals in Rakai, Uganda.

Methods

Children under five years hospitalized in Kalisizo hospital or Bikira health center in Rakai district, Uganda between May 2011 and May 2012 were enrolled and followed-up until discharge, death or referral. Data were collected on social-demographic characteristics, current and past illnesses and clinical signs and symptoms. Blood smears, hemoglobin (Hgb) levels and HIV testing were performed from finger/heel prick blood. The associations between malaria infection and other factors were estimated using log-binomial regression to estimate adjusted prevalence risk ratios (aPRR) and 95% confidence intervals (CIs), controlling for clustering at health facilities.

Results

2471 children were enrolled. The most common medical presentations were fever (96.2%), cough (61.7%), vomiting (44.2%), diarrhea (20.8%), and seizures (16.0%). The prevalence of malaria parasitemia was 54.6%. Children with malaria were more likely to present with a history of fever (aPRR 2.23; CI 1.18–4.24) and seizures (aPRR 1.12; CI 1.09–1.16). Confirmed malaria was significantly lower among girls than boys (aPRR 0.92; CI 0.91–0.93), HIV infected children (aPRR 0.60 CI 0.52–0.71), and children with diarrhea (aPRR 0.76; CI 0.65–0.90). The overall prevalence of anemia (Hgb<10 g/dl) was 56.3% and severe anemia (Hgb<6 g/dL) was 17.8%. Among children with severe anemia 76.8% had malaria parasitemia, of whom 93.1% received blood transfusion. Malaria associated mortality was 0.6%.

Conclusion

There was a high prevalence of malaria parasitemia and anemia among inpatient children under five years. Malaria prevention is a priority in this population.  相似文献   

18.

Background

Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability.

Methodology/Principal Findings

This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9).

Conclusion

This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.  相似文献   

19.
Asymptomatic malaria infections represent a major challenge in malaria control and elimination in Africa. They are reservoirs of malaria parasite that can contribute to disease transmission. Therefore, identification and control of asymptomatic infections are important to make malaria elimination feasible. In this study, we investigated the extent and distribution of asymptomatic malaria in Western Kenya and examined how varying parasitemia affects performance of diagnostic methods including microscopy, conventional PCR, and quantitative PCR. In addition, we compared parasite prevalence rates and parasitemia levels with respect to topography and age in order to explore factors that influence malaria infection. Over 11,000 asymptomatic blood samples from children and adolescents up to 18 years old representing broad areas of Western Kenya were included. Quantitative PCR revealed the highest parasite positive rate among all methods and malaria prevalence in western Kenya varied widely from less than 1% to over 50%. A significantly lower parasitemia was detected in highland than in lowland samples and this contrast was also observed primarily among submicroscopic samples. Although we found no correlation between parasitemia level and age, individuals of younger age group (aged <14) showed significantly higher parasite prevalence. In the lowlands, individuals of aged 5–14 showed significantly higher prevalence than those under age 5. Our findings highlight the need for a more sensitive and time-efficient assay for asymptomatic malaria detection particularly in areas of low-transmission. Combining QPCR with microscopy can enhance the capacity of detecting submicroscopic asymptomatic malaria infections.  相似文献   

20.
Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and α-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and α-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号