首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Epiphytes are conspicuous structural elements of tropical forest canopies. Individual tree crowns in lowland forests may support more than 30 ant species, yet we know little about the effects of epiphytes on ant diversity. We examined the composition of arboreal ant communities on Annona glabra trees and their interactions with the epiphytic orchid Caularthron bilamellatum in Panama. We surveyed the ants on 73 trees (45 with C. bilamellatum and 28 lacking epiphytes) and recorded their nest sites and behavioral dominance at baits. We found a total of 49 ant species (in 20 genera), ranging 1–9 species per tree. Trees with C. bilamellatum had higher average (±SD) ant species richness (4.2±2.28) than trees without epiphytes (2.7±1.21). Hollow pseudobulbs (PBs) of C. bilamellatum were used as nest sites by 32 ant species, but only 43 percent of suitable PBs were occupied. Ant species richness increased with PB abundance in trees, but nest sites did not appear to be a limiting resource on A. glabra. We detected no close association between ants and the orchid. We conclude that higher ant species richness in the presence of the orchid is due to bottom‐up effects, especially the year‐round supply of extrafloral nectar. The structure of ant communities on A. glabra partly reflects interference competition among behaviorally dominant species and stochastic factors, as observed in other forests.  相似文献   

2.
    
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

3.
    
Tropical forest loss and fragmentation can change bee community dynamics and potentially interrupt plant–pollinator relationships. While bee community responses to forest fragmentation have been investigated in a number of tropical regions, no studies have focused on this topic in Australia. In this study, we examine taxonomic and functional diversity of bees visiting flowers of three tree species across small and large rainforest fragments in Australian tropical landscapes. We found lower taxonomic diversity of bees visiting flowers of trees in small rainforest fragments compared with large forest fragments and show that bee species in small fragments were subsets of species in larger fragments. Bees visiting trees in small fragments also had higher mean body sizes than those in larger fragments, suggesting that small‐sized bees may be less likely to persist in small fragments. Lastly, we found reductions in the abundance of eusocial stingless bees visiting flowers in small fragments compared to large fragments. These results suggest that pollinator visits to native trees living in small tropical forest remnants may be reduced, which may in turn impact on a range of processes, potentially including forest regeneration and diversity maintenance in small forest remnants in Australian tropical countryside landscapes.  相似文献   

4.
    
Habitat fragmentation results in landscape configuration, which affects the species that inhabit it. As a consequence, natural habitat is replaced by different anthropogenic plantation types (e.g. pasture, agriculture, forestry plantations and urban areas). Anthropogenic plantations are important for biodiversity maintenance because some species or functional groups can use it as a complementary habitat. However, depending on plantation permeability, it can act as a barrier to the movement of organisms between habitat patches, such as forest fragments, reducing functional connectivity for many species. Anthropogenic plantations are becoming the most common land use and cover type in the Anthropocene and biodiversity conservation in fragmented landscapes requires information on how different plantation types affect the capacity of the species to move through the landscape. In this study, we evaluated the influence of the type and structure of plantations on the movement of two forest‐dependent understory bird species – plain antvireo (Dysithamnus mentalis) and flavescent warbler (Myiothlyps flaveola) – within a highly fragmented landscape of Atlantic Forest hotspot. Knowing that forestry plantation is assumed to be more permeable to dependent forest bird species than open ones, we selected six study areas containing a forest fragment and surrounding plantation: three with sugarcane plantation and three with Eucalyptus sp. plantation. We used playback calls to stimulate the birds to leave forest fragments and traverse the plantations. Control trials were also carried out inside the forest fragments to compare the distances crossed. We observed that individuals moved longer distances inside forest than between plantation types, which demonstrate that plantations do constrict the movements of both species. The two plantation types equally impeded the movements of the species, suggesting the opposite of the general assumption that forestry plantations are more permeable. Our results indicate that, for generalist species, plantation type does not matter, but its presence negatively impacts movement of these bird species. We highlight that plantations have negative influences on the movements of common bird species, and discuss why this is important when setting conservation priorities.  相似文献   

5.
    
The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km2 area, over 750 000 km2 of forest and ~240 000 km2 of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's ‘Legal Amazonia’ and ‘Amazonia biome’ regions. Biomass of ‘premodern’ vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250 000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1‐ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below‐ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha?1 when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts.  相似文献   

6.
    
Tropical landscapes are changing rapidly as a result of human modifications; however, despite increasing deforestation, human population growth, and the need for more agricultural land, deforestation rates have exceeded the rate at which land is converted to cropland or pasture. For deforested lands to have conservation value requires an understanding of regeneration rates of vegetation, the rates at which animals colonize and grow in regenerating areas, and the nature of interactions between plants and animals in the specific region. Here, we present data on forest regeneration and animal abundance at four regenerating sites that had reached the stage of closed canopy forest where the average dbh of the trees was 17 cm. Overall, 20.3 percent of stems were wind‐dispersed species and 79.7 percent were animal‐dispersed species, while in the old‐growth forest 17.3 percent of the stems were wind‐dispersed species. The regenerating forest supported a substantial primate population and encounter rate (groups per km walked) in the regenerating sites was high compared to the neighboring old‐growth forests. By monitoring elephant tracks for 10 yr, we demonstrated that elephant numbers increased steadily over time, but they increased dramatically since 2004. In general, the richness of the mammal community detected by sight, tracks, feces, and/or camera traps, was high in regenerating forests compared to that documented for the national park. We conclude that in Africa, a continent that has seen dramatic declines in the area of old‐growth forest, there is ample opportunity to reclaim degraded areas and quickly restore substantial animal populations.  相似文献   

7.
    
Resource availability influences sexual selection within populations and determines whether behaviours such as territoriality or resource sharing are adaptive. In Thoropa taophora, a frog endemic to the Atlantic Coastal Rainforest of Brazil, males compete for and defend limited breeding sites while females often share breeding sites with other females; however, sharing breeding sites may involve costs due to cannibalism by conspecific tadpoles. We studied a breeding population of T. taophora to determine (i) whether this species exhibits polygynous mating involving female choice for territorial males and limited breeding resources; (ii) whether limited breeding resources create the potential for male–male cooperation in defence of neighbouring territories; and (iii) whether females sharing breeding sites exhibit kin‐biased breeding site choice, possibly driven by fitness losses due to cannibalism among offspring of females sharing sites. We used microsatellites to reconstruct parentage and quantify relatedness at eight breeding sites in our focal population, where these sites are scarce, and in a second population, where sites are abundant. We found that at localities where the appropriate sites for reproduction are spatially limited, the mating system for this species is polygynous, with typically two females sharing a breeding site with a male. We also found that females exhibit negative kin‐bias in their choice of breeding sites, potentially to maximize their inclusive fitness by avoiding tadpole cannibalism of highly related kin. Our results indicate that male territorial defence and female site sharing are likely important components of this mating system, and we propose that kinship‐dependent avoidance in mating strategies may be more general than previously realized.  相似文献   

8.
    
Efforts to restore tropical forest in abandoned pasture are likely to be more successful when bird visitation is promoted because birds disperse seeds and eat herbivorous arthropods that damage leaves. Thus, it is critical to understand bird behavior in relation to different restoration strategies. We measured the likelihood of visitation, number of visits, and duration of visits for all birds and for Cherrie's Tanager ( Ramphocelus costaricensis ), a common seed disperser, in five sizes of forest restoration patches planted with four tree species in southern Costa Rica. We predicted that the largest patches, and the tree species with the greatest canopy cover, would be visited most frequently and have the longest visits because we assumed that these patch types had the greatest food resources and the lowest predation risk. We found that birds were more likely to visit large patches and the tree species with the highest canopy cover ( Inga edulis ). Birds visited Inga trees more often and stayed in Inga and Erythrina poeppigiana trees for longer periods of time than in other tree species. We found similar results for Cherrie's Tanagers. Thus, we identified two factors, tree species and patch size, which may be manipulated in restoration projects to increase bird visitation.  相似文献   

9.
    
Large mammalian herbivores play an important role in shaping the diversity of tropical forests by affecting the survival of seedlings and saplings beneath parent plants. The white‐lipped peccary (Tayassu pecari) accounts for the largest herbivore biomass that controls seed and seedling survival in Neotropical ecosystems. However, hunting and habitat loss has driven peccaries to local extinction for most of their original distribution, so it is likely that their absence will affect plant recruitment dynamics. We tested the effects of peccary local extinction on the density and spatial distribution of the hyperdominant palm Euterpe edulis by performing a fine‐scale characterization of its spatial recruitment in six forest sites in the Brazilian Atlantic forest. We compared the age structure and the spatial patterns of seedlings, saplings, and adults as well as the relationship between them. We found that while under the presence of peccaries there was a decrease in recruitment rates under adults, the local extinction of these large mammals led to a more clumped process of spatial recruitment. Despite such contrasting spatial patterns of recruitment dynamics, neither age structure nor the random spatial distribution of adults was affected by the presence or absence of peccaries, indicating that their early effects on these palm populations are mitigated as recruitment advances. Our findings highlight the role of large‐bodied forest‐dwelling herbivores in regulating the fine‐scale spatial recruitment of plants and advance our understanding on the effects of defaunation in tropical forests. Abstract in Portuguese is available with online material.  相似文献   

10.
    
Neighboring upland and nutrient‐poor seasonally flooded Amazon forests were penetrated by a fire in 2009, providing a natural comparative experiment of fire damage for these widespread forest types. In upland, only 16 ± 10% (±2 SEM) of stems and 21 ± 8% of basal area were lost to fire, while seasonally flooded forest lost 59 ± 13% of stems and 57 ± 13% of basal area. Drier understory contributes to greater flammability. Much of the area occupied by seasonally flooded woody vegetation (>11.5 percent of the Amazon region) is vulnerable to fire due to high flammability and slow recovery.  相似文献   

11.
    
Nonnative ungulates can alter the structure and function of forest ecosystems. Feral pigs in particular pose a substantial threat to native plant communities throughout their global range. Hawaiian forests are exceptionally vulnerable to feral pig activity because native vegetation evolved in the absence of large mammalian herbivores. A common approach for conserving and restoring forests in Hawaii is fencing and removal of feral pigs. The extent of native plant community recovery and nonnative plant invasion following pig removal, however, is largely unknown. Our objective was to quantify changes in native and nonnative understory vegetation over a 16 yr period in adjacent fenced (pig‐free) vs. unfenced (pig‐present) Hawaiian montane wet forest. Native and nonnative understory vegetation responded strongly to feral pig removal. Density of native woody plants rooted in mineral soil increased sixfold in pig‐free sites over 16 yr, whereas establishment was almost exclusively restricted to epiphytes in pig‐present sites. Stem density of young tree ferns increased significantly (51.2%) in pig‐free, but not pig‐present sites. Herbaceous cover decreased over time in pig‐present sites (67.9%). In both treatments, number of species remained constant and native woody plant establishment was limited to commonly occurring species. The nonnative invasive shrub, Psidium cattleianum, responded positively to release from pig disturbance with a fivefold increase in density in pig‐free sites. These results suggest that while common native understory plants recover within 16 yr of pig removal, control of nonnative plants and outplanting of rarer native species are necessary components of sustainable conservation and restoration efforts in these forests.  相似文献   

12.
    
Estimates of forest leaf litter frog density, mass, richness and diversity given by the widely used 8 m × 8 m large plot method (LPM) were compared with estimates obtained by a newly proposed method (small 2 m × 1 m plots with leaf removal; SPLR). The study site was an undisturbed area of the Atlantic Rainforest of Ilha Grande, an island located in the south of Rio de Janeiro State, Brazil. Twenty‐four LPM (totalling 1536 m2 of forest floor) and 90 SPLR (totalling 180 m2 of forest floor) were performed. The estimates obtained by the two methods differed markedly, indicating that even using a much smaller sampling area (11.7% of that of LPM), SPLR gave frog density estimates six times higher, and frog mass estimates approximately 2.5 times higher than estimates provided by LPM. The species richness and diversity obtained by the two methods were similar, despite the fact that the total area sampled with SPLR was much smaller. These data suggest that LPM may underestimate the abundance and biomass of leaf litter frogs in a given area.  相似文献   

13.
    
  相似文献   

14.
    
As climbing plants lack the capacity to hold themselves upright, they need to encounter a suitable host. Vines, lianas, and secondary hemiepiphytes need, therefore, an effective searching strategy. Various hypotheses have been put forward on searching strategies, including ‘skototropism’—growth toward darkness—and random searching. We studied host searching strategies of three secondary hemiepiphyte species belonging to the genus Heteropsis. We recorded information on the diameter distribution of host and evaluated whether these hosts were ‘suitable’, i.e., sufficiently tall for Heteropsis individuals to reach reproductive size. The diameter distribution of host trees bearing Heteropsis seedlings was similar to that of the trees in our study plots. Also, we found that 72–81 percent of the Heteropsis seedlings were present on unsuitable hosts (seedlings, saplings, herbs). These results suggest that Heteropsis seedlings search hosts in a random manner and not by skototropism. We found quite a distinct pattern for adult Heteropsis individuals, which predominantly occur on host trees bigger than 10 cm dbh. Host diameter distribution for Heteropsis adults differed significantly from that of the entire tree community. This difference suggests that Heteropsis individuals may change hosts if they are initially present on nonsuitable hosts. We observed that Heteropsis seedlings and juveniles on unsuitable hosts often produced vegetative shoots that searched for another host. In many cases, such shoots did not find a suitable host. For Heteropsis, our results suggest that host tree searching is a long‐term trial and error process that is governed by a random searching strategy. Abstract in Spanish is available in the online version of this article.  相似文献   

15.
    
Ecological invasions are a major issue worldwide, where successful invasion depends on traits that facilitate dispersion, establishment, and population growth. The nonnative succulent plant Kalanchoe pinnata, reported as invasive in some countries, is widespread in remnants of seasonally dry tropical forest on a volcanic outcrop with high conservation value in east‐central Mexico where we assessed its mating system and demographic growth and identified management strategies. To understand its local mating system, we conducted hand‐pollination treatments, germination, and survival experiments. Based on the experimental data, we constructed a life‐stage population matrix, identified the key traits for population growth, weighted the contributions of vegetative and sexual reproduction, and evaluated management scenarios. Hand‐pollination treatments had slight effects on fruit and seed setting, as well as on germination. With natural pollination treatment, the successful germination of seeds from only 2/39 fruit suggests occasional effective natural cross‐pollination. The ratios of the metrics for self‐ and cross‐pollinated flowers suggest that K. pinnata is partially self‐compatible. Most of the pollinated flowers developed into fruit, but the seed germination and seedling survival rates were low. Thus, vegetative propagation and juvenile survival are the main drivers of population growth. Simulations of a virtual K. pinnata population suggest that an intense and sustained weeding campaign will reduce the population within at least 10 years. Synthesis and applications. The study population is partially self‐compatible, but sexual reproduction by K. pinnata is limited at the study site, and population growth is supported by vegetative propagation and juvenile survival. Demographic modeling provides key insights and realistic forecasts on invasion process and therefore is useful to design management strategies.  相似文献   

16.
17.
    
Many countries in Africa, and more generally those in the Global South with tropical areas, are plagued by illnesses that the wealthier parts of the world (mainly ‘the West’) neither suffer from nor put systematic effort into preventing, treating or curing. What does an ethic with a recognizably African pedigree entail for the ways various agents ought to respond to such neglected diseases? As many readers will know, a characteristically African ethic prescribes weighty duties to aid on the part of those in a position to do so, and it therefore entails that there should have been much more contribution from the Western, ‘developed’ world. However, what else does it prescribe, say, on the part of sub‐Saharan governments and the African Union, and are they in fact doing it? I particularly seek to answer these questions here, by using the 2013‐16 Ebola crisis in West Africa to illustrate what should have happened but what by and large did not.  相似文献   

18.
    
Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century.  相似文献   

19.
We isolated 14 polymorphic microsatellite loci for the western Atlantic tropical seagrass, Thalassia testudinum, using two different enrichment procedures. Polymorphism was screened among samples from Mexico and Panama. Allelic diversity varied between three and 17 alleles per locus, and expected heterozygosity ranged from 0.271 to 0.859.  相似文献   

20.
    
Adoption of reduced‐impact logging (RIL) methods could reduce CO2 emissions by 30–50% across at least 20% of remaining tropical forests. We developed two cost effective and robust indices for comparing the climate benefits (reduced CO2 emissions) due to RIL. The indices correct for variability in the volume of commercial timber among concessions. We determined that a correction for variability in terrain slope was not needed. We found that concessions certified by the Forest Stewardship Council (FSC, N = 3), when compared with noncertified concessions (= 6), did not have lower overall CO2 emissions from logging activity (felling, skidding, and hauling). On the other hand, FSC certified concessions did have lower emissions from one type of logging impact (skidding), and we found evidence of a range of improved practices using other field metrics. One explanation of these results may be that FSC criteria and indicators, and associated RIL practices, were not designed to achieve overall emissions reductions. Also, commonly used field metrics are not reliable proxies for overall logging emissions performance. Furthermore, the simple distinction between certified and noncertified concessions does not fully represent the complex history of investments in improved logging practices. To clarify the relationship between RIL and emissions reductions, we propose the more explicit term ‘RIL‐C’ to refer to the subset of RIL practices that can be defined by quantified thresholds and that result in measurable emissions reductions. If tropical forest certification is to be linked with CO2 emissions reductions, certification standards need to explicitly require RIL‐C practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号