首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vertebrate populations are influenced by environmental processes that operate at a range of spatial and temporal scales. Wildfire is a disturbance that can affect vertebrate populations across large spatial scales, although vertebrate responses are frequently influenced by processes operating at smaller spatial scales such as topography, interspecific interactions and regional history. Here, we investigate the effects of a broad-scale wildfire on lizard assemblages in a desert region. We predicted that a rainfall gradient within the region affected by the wildfire would influence lizard responses to the fire by encouraging post-fire succession to proceed more rapidly in high-rainfall areas, and would be enabled in turn by more rapid vegetation recovery. To test our prediction, we censused lizards, measured rainfall, undertook vegetation surveys and sampled invertebrate abundance across burnt and unburnt habitat ecotones within three regional areas situated along a gradient of long-term annual rainfall. Lizard diversity was not affected by fire or region and lizard abundance was influenced only by region. Lizard assemblage composition was also only influenced by region, but this did not relate to differences in rainfall or habitat as we had predicted. Regional differences in lizard assemblages related instead to food availability. The observed differences also likely reflected regional differences in the strength of biotic interactions with predators and changes in land use. Our study shows that assemblage responses to a disturbance were not uniform within a large desert region and instead were influenced by other environmental processes operating simultaneously at multiple temporal and spatial scales.  相似文献   

2.
Biodiversity encompasses multiple facets, among which taxonomic, functional and phylogenetic aspects are the most often considered. Understanding how those diversity facets are distributed and what are their determinants has become a central concern in the current context of biodiversity crisis, but such multi‐faceted measures over large geographical areas are still pending. Here, we measured the congruence between the biogeographical patterns of freshwater fish morphological, ecological and phylogenetic diversity across Europe and identified the natural and anthropogenic drivers shaping those patterns. Based on freshwater fish occurrence records in 290 European river catchments, we computed richness and evenness for morphological, ecological and phylogenetic diversity using standardized effect sizes for each diversity index. We then used linear models including climatic, geo‐morphological, biotic and human‐related factors to determine the key drivers shaping freshwater fish biodiversity patterns across Europe. We found a weak spatial congruence between facets of diversity. Patterns of diversity were mainly driven by elevation range, climatic seasonality and species richness while other factors played a minor role. Finally, we found that non‐native species introductions significantly affected diversity patterns and influenced the effects of some environmental drivers. Morphological, ecological and phylogenetic diversity constitute complementary facets of fish diversity rather than surrogates, testifying that they deserve to be considered altogether to properly assess biodiversity. Although the same environmental and anthropogenic factors overall explained those diversity facets, their relative influence varied. In the current context of global change, non‐native species introductions may also lead to important reshuffling of assemblages resulting in profound changes of diversity patterns.  相似文献   

3.
Lizard distribution patterns were examined in relation to elevation in two undulating landscapes. We asked three specific questions: (1) Were different lizard species associated with particular elevations? (2) Did biological attributes of lizards (e.g. body size, colour, reproduction strategy, etc.) vary with elevation? (3) Did species richness of lizards vary with elevation? Field data were collected in two undulating production landscapes in south‐eastern Australia, approximately 100 km to the west of the Australian Capital Territory. Lizards were surveyed using 648 pitfall traps and 3840 m of drift fence. Both study landscapes were divided into 50 m elevation classes. For each elevation class, survey effort, the capture rate of individual species, and species richness were recorded. Correspondence analysis was used to sort lizards according to their altitudinal distribution profiles. Analysis of variance was used to examine if biological attributes of lizards were related to their altitudinal distribution profiles. Generalized linear modelling was used to relate elevation to the capture rate of individual species, and to species richness. Lizard species differed in their altitudinal preferences. Skinks, taxa with a Bassian distribution or distribution restricted to the Great Dividing Range, dark‐bodied species and viviparous species were more likely to inhabit high elevations. Elevation was significantly related to the capture rate of seven species, and ecologically similar species replaced one another as elevation increased. Species richness peaked significantly at intermediate elevations in both landscapes. We conclude that lizards were highly sensitive to elevation. Elevation changes of as little as 50 m may be related to a change in species richness or species composition. Future research should assess if reptiles in other undulating landscapes with a temperate climate are similarly sensitive to elevation. If so, conservation activities in these landscapes need to consider the full spectrum of topographic positions and elevations.  相似文献   

4.
Species assemblages and their interactions vary through space, generating diversity patterns at different spatial scales. Here, we study the local‐scale spatial variation of a cavity‐nesting bee and wasp community (hosts), their nest associates (parasitoids), and the resulting antagonistic network over a continuous and homogeneous habitat. To obtain bee/wasp nests, we placed trap‐nests at 25 sites over a 32 km2 area. We obtained 1,541 nests (4,954 cells) belonging to 40 host species and containing 27 parasitoid species. The most abundant host species tended to have higher parasitism rate. Community composition dissimilarity was relatively high for both hosts and parasitoids, and the main component of this variability was species turnover, with a very minor contribution of ordered species loss (nestedness). That is, local species richness tended to be similar across the study area and community composition tended to differ between sites. Interestingly, the spatial matching between host and parasitoid composition was low. Host β‐diversity was weakly (positively) but significantly related to geographic distance. On the other hand, parasitoid and host‐parasitoid interaction β‐diversities were not significantly related to geographic distance. Interaction β‐diversity was even higher than host and parasitoid β‐diversity, and mostly due to species turnover. Interaction rewiring between plots and between local webs and the regional metaweb was very low. In sum, species composition was rather idiosyncratic to each site causing a relevant mismatch between hosts and parasitoid composition. However, pairs of host and parasitoid species tended to interact similarly wherever they co‐occurred. Our results additionally show that interaction β‐diversity is better explained by parasitoid than by host β‐diversity. We discuss the importance of identifying the sources of variation to understand the drivers of the observed heterogeneity.  相似文献   

5.
Mexico has higher mammalian diversity than expected for its size and geographic position. High environmental hetero geneity throughout Mexico is hypothesized to promote high turnover rates (β‐diversity), thus contributing more to observed species richness and composition than within‐habitat (α) diversity. This is true if species are strongly associated with their environments, such that changes in environmental attributes will result in changes in species composition. Also, greater heterogeneity in an area will result in greater species richness. This hypothesis has been deemed false for bats, as their ability to fly would reduce opportunities for habitat specialization. If so, we would expect no significant relationships between 1) species composition and environmental variables, 2) species richness and environmental heterogeneity, 3) β‐diversity and environmental heterogeneity. We tested these predictions using 31 bat assemblages distributed across Mexico. Using variance partitioning we evaluated the relative contribution of vegetation, climate, elevation, horizontal heterogeneity (a variate including vegetation, climate, and elevational heterogeneity), spatial variation (lat‐long), and vertical hetero geneity (of vegetation strata) to variation in bat species composition and richness. Variation in vegetation explained 92% of the variation in species composition and was correlated with all other variables examined, indicating that bats respond directly to habitat composition and structure. Beta‐diversity and vegetational heterogeneity were significantly correlated. Bat species richness was significantly correlated with vertical, but not horizontal, heterogeneity. Nonetheless, neither horizontal nor vertical heterogeneity were random; both were related to latitude and to elevation. Variation in bat community composition and richness in Mexico were primarily explained by local landscape heterogeneity and environmental factors. Significant relationships between β‐diversity and environmental variation reveal differences in habitat specialization by bats, and explain their high diversity in Mexico. Understanding mechanisms acting along environmental or geographic gradients is as important for understanding spatial variation in community composition as studying mechanisms that operate at local scales.  相似文献   

6.
7.
The underlying drivers of β‐diversity along latitudinal gradients have been unclear. Previous studies have focused on β‐diversities calculated at a local scale and shed limited light on regional β‐diversity. We tested the much‐debated effects of range size vs. environmental filtering on the β‐gradient using data from the US Forest Inventory Analysis Program. We showed that the drivers of the β‐gradient were scale dependent. At the local scale species spatial patterns contributed little to the β‐gradient, whereas at the regional scale spatial patterns dominated the gradient and a U‐shape latitudinal relationship for the standardised β‐diversity deviation was revealed. The relationship can be explained by spatial variation in climate and soil texture, thus supporting the environmental filtering hypothesis. But it is inconsistent with Rapoport's rule about the effect of range size on β‐gradient. These results resolve the debate on whether species spatial distributions contribute to β‐gradient and attest the importance of environmental filtering in determining regional β‐diversity.  相似文献   

8.
Environmental filtering and spatial structuring are important ecological processes for the generation and maintenance of biodiversity. However, the relative importance of these ecological drivers for multiple facets of diversity is still poorly understood in highland streams. Here, we examined the responses of three facets of stream macroinvertebrate alpha diversity to local environmental, landscape‐climate and spatial factors in a near‐pristine highland riverine ecosystem. Taxonomic (species richness, Shannon diversity, and evenness), functional (functional richness, evenness, divergence, and Rao's Quadratic entropy), and a proxy of phylogenetic alpha diversity (taxonomic distinctness and variation in taxonomic distinctness) were calculated for macroinvertebrate assemblages in 55 stream sites. Then Pearson correlation coefficient was used to explore congruence of indices within and across the three diversity facets. Finally, multiple linear regression models and variation partitioning were employed to identify the relative importance of different ecological drivers of biodiversity. We found most correlations between the diversity indices within the same facet, and between functional richness and species richness were relatively strong. The two phylogenetic diversity indices were quite independent from taxonomic diversity but correlated with functional diversity indices to some extent. Taxonomic and functional diversity were more strongly determined by environmental variables, while phylogenetic diversity was better explained by spatial factors. In terms of environmental variables, habitat‐scale variables describing habitat complexity and water physical features played the primary role in determining the diversity patterns of all three facets, whereas landscape factors appeared less influential. Our findings indicated that both environmental and spatial factors are important ecological drivers for biodiversity patterns of macroinvertebrates in Tibetan streams, although their relative importance was contingent on different facets of diversity. Such findings verified the complementary roles of taxonomic, functional and phylogenetic diversity, and highlighted the importance of comprehensively considering multiple ecological drivers for different facets of diversity in biodiversity assessment.  相似文献   

9.
Beta diversity describes changes in species composition among sites in a region and has particular relevance for explaining ecological patterns in fragmented habitats. However, it is difficult to reveal the mechanisms if broad sense beta-diversity indices (i.e. yielding identical values under nestedness and species replacement) are used. Partitioning beta diversity into turnover (caused by species replacement from site to site) and nestedness-resultant components (caused by nested species losses) could provide a unique way to understand the variation of species composition in fragmented habitats. Here, we collected occupancy data of breeding birds and lizards on land-bridge islands in an inundated lake in eastern China. We decomposed beta diversity of breeding bird and lizard communities into spatial turnover and nestedness-resultant components to assess their relative contributions and respective relationships to differences in island area, isolation, and habitat richness. Our results showed that spatial turnover contributed more to beta diversity than the nestedness-resultant component. The degree of isolation had no significant effect on overall beta diversity or its components, neither for breeding birds nor for lizards. In turn, in both groups the nestedness-resultant component increased with larger differences in island area and habitat richness, respectively, while turnover component decreased with them. The major difference among birds and lizards was a higher relevance of nestedness-resultant dissimilarity in lizards, suggesting that they are more prone to local extinctions derived from habitat fragmentation. The dominance of the spatial turnover component of beta diversity suggests that all islands have potential conservation value for breeding bird and lizard communities.  相似文献   

10.
Aim Studies exploring the determinants of geographical gradients in the occurrence of species or their traits obtain data by: (1) overlaying species range maps; (2) mapping survey‐based species counts; or (3) superimposing models of individual species’ distributions. These data types have different spatial characteristics. We investigated whether these differences influence conclusions regarding postulated determinants of species richness patterns. Location Our study examined terrestrial bird diversity patterns in 13 nations of southern and eastern Africa, spanning temperate to tropical climates. Methods Four species richness maps were compiled based on range maps, field‐derived bird atlas data, logistic and autologistic distribution models. Ordinary and spatial regression models served to examine how well each of five hypotheses predicted patterns in each map. These hypotheses propose productivity, temperature, the heat–water balance, habitat heterogeneity and climatic stability as the predominant determinants of species richness. Results The four richness maps portrayed broadly similar geographical patterns but, due to the nature of underlying data types, exhibited marked differences in spatial autocorrelation structure. These differences in spatial structure emerged as important in determining which hypothesis appeared most capable of explaining each map's patterns. This was true even when regressions accounted for spurious effects of spatial autocorrelation. Each richness map, therefore, identified a different hypothesis as the most likely cause of broad‐scale gradients in species diversity. Main conclusions Because the ‘true’ spatial structure of species richness patterns remains elusive, firm conclusions regarding their underlying environmental drivers remain difficult. More broadly, our findings suggest that care should be taken to interpret putative determinants of large‐scale ecological gradients in light of the type and spatial characteristics of the underlying data. Indeed, closer scrutiny of these underlying data — here the distributions of individual species — and their environmental associations may offer important insights into the ultimate causes of observed broad‐scale patterns.  相似文献   

11.
Mammals that build extensive open burrow systems are often classified as ecosystem engineers, since they have the potential to modulate the availability of resources for themselves and other organisms. Lizards may benefit from the heterogeneity created by these structures, especially if coupled with an increased offer of sites for refuge and thermoregulation. However, information about these engineering effects by burrowing animals is scarce. We investigated the influence of European rabbit burrows on several parameters of a Mediterranean lizard community (abundance, density, diversity and body condition) in three different habitats (open pastures, holm oak and scrub patches). We found that lizards were positively associated with burrows, and that burrows determined lizard presence at otherwise unfavourable habitats. Moreover, community parameters such as density and species richness were higher in sites with burrows. Burrows influenced lizard species in different ways, and were also relevant for other Mediterranean vertebrates, as revealed by questionnaires to experts. We also explored the possible resources provided by burrows for lizards. Warrens offer relatively abundant prey and appropriate retreat sites for refuge and thermoregulation. Warrens may have further implications within the ecosystem, acting as stepping stones, allowing lizards to reach otherwise inaccessible habitat patches. This study shows that European rabbit warrens have a positive influence on lizard density and diversity, and confirms the role of rabbits as ecosystem engineers. This reinforces the need for appropriate conservation measures for rabbits, especially given their threatened status in the Iberian Peninsula. Furthermore, our study highlights that taking into account the influence of engineering activities increases our awareness of species interactions, and may translate into more adequate conservation measures for the preservation of biodiversity.  相似文献   

12.
Invasive vertebrates are frequently reported to have catastrophic effects on the populations of species which they directly impact. It follows then, that if invaders exert strong suppressive effects on some species then other species will indirectly benefit due to ecological release from interactions with directly impacted species. However, evidence that invasive vertebrates trigger such trophic cascades and alter community structure in terrestrial ecosystems remains rare. Here, we ask how the cane toad, a vertebrate invader that is toxic to many of Australia's vertebrate predators, influences lizard assemblages in a semi‐arid rangeland. In our study area, the density of cane toads is influenced by the availability of water accessible to toads. We compared an index of the abundance of sand goannas, a large predatory lizard that is susceptible to poisoning by cane toads and the abundances of four lizard families preyed upon by goannas (skinks, pygopods, agamid lizards and geckos) in areas where cane toads were common or rare. Consistent with the idea that suppression of sand goannas by cane toads initiates a trophic cascade, goanna activity was lower and small lizards were more abundant where toads were common. The hypothesis that suppression of sand goannas by cane toads triggers a trophic cascade was further supported by our findings that small terrestrial lizards that are frequently preyed upon by goannas were more affected by toad abundance than arboreal geckos, which are rarely consumed by goannas. Furthermore, the abundance of at least one genus of terrestrial skinks benefitted from allogenic ecosystem engineering by goannas where toads were rare. Overall, our study provides evidence that the invasion of ecosystems by non‐native species can have important effects on the structure and integrity of native communities extending beyond their often most obvious and frequently documented direct ecological effects.  相似文献   

13.
Abstract 1. Predators can affect prey directly by reducing prey abundance and indirectly by altering behavioural patterns of prey. From previous studies, there is little evidence that ant community structure is affected by vertebrate predation. 2. Researchers tend to consider the interactions between vertebrate predators and ants to be weak. The present study examined the impact of the exotic invasive lizard, Anolis sagrei, on the ant community structure by manipulating the density of lizards within enclosures. The natural density of A. sagrei in the field was surveyed and used as the stocking density rate in the lizard‐present sub‐enclosures. 3. Before the lizard density was manipulated, there was no difference in the ant diversity between sub‐enclosures. After the lizard density manipulation, the ant diversity in sub‐enclosures with A. sagrei present was significantly different from that of enclosures where the lizards were absent, although the overall ant abundance did not differ significantly. 4. The ant diversity difference was generated by a significant reduction of the ant species Pheidole fervens in sub‐enclosures with A. sagrei present. Such an abundance change might be the result of direct predation by the lizards, or it might be generated by a foraging site shift by this ant. 5. The results of this study thus demonstrated that the invasion of an exotic vertebrate can significantly alter the community structure of ants, perhaps through the combined direct and indirect effects of lizards on ants.  相似文献   

14.
Comparing elevational gradients across a wide spectrum of climatic zones offers an ideal system for testing hypotheses explaining the altitudinal gradients of biodiversity. We document elevational patterns of lizard and snake species richness, and explore how land area and climatic factors may affect species distributions of lizards and snakes. Our synthesis found 42 lizard species and 94 snake species known from the Hengduan Mountains. The lizards are distributed between 500 and 3500 m, and the snakes are distributed between 500 and 4320 m. The relationship between species richness and elevation for lizards and snakes is unimodal. Land area explains a significant amount of the variation in lizard and snake species richness. The cluster analysis reveals pronounced distinct assemblages for lizards and snakes to better reflect the vertical profiles of climate in the mountains. Climatic variables are strongly associated with lizard and snake richness along the elevational gradient. The data strongly implicate water availability as a key constraint on lizard species richness, and annual potential evapotranspiration is the best predictor of snake species richness along the elevational gradient in the Hengduan Mountains.  相似文献   

15.
Aim A major Late Quaternary vertebrate extinction event affected mostly large‐bodied ‘megafauna’. This is well documented in both mammals and birds, but evidence of a similar trend in reptiles is scant. We assess the relationship between body size and Late Quaternary extinction in reptiles at the global level. Location Global. Methods We compile a body size database for all 82 reptile species that are known to have gone extinct during the last 50,000 years and compare them with the sizes of 10,090 extant reptile species (97% of known extant diversity). We assess the body size distributions in the major reptile groups: crocodiles, lizards, snakes and turtles, while testing and correcting for a size bias in the fossil record. We examine geographical biases in extinction by contrasting mainland and insular reptile assemblages, and testing for biases within regions and then globally by using geographically weighted models. Results Extinct reptiles were larger than extant ones, but there was considerable variation in extinction size biases among groups. Extinct lizards and turtles were large, extinct crocodiles were small and there was no trend in snakes. Lizard lineages vary in the way their extinction is related to size. Extinctions were particularly prevalent on islands, with 73 of the 82 extinct species being island endemics. Four others occurred in Australia. The fossil record is biased towards large‐bodied reptiles, but extinct lizards were larger than extant ones even after we account for this. Main conclusions Body size played a complex role in the extinction of Late Quaternary reptiles. Larger lizard and turtle species were clearly more affected by extinction mechanisms such as over exploitation and invasive species, resulting in a prevalence of large‐bodied species among extinct taxa. Insularity was by far the strongest correlate of recent reptile extinctions, suggesting that size‐biased extinction mechanisms are amplified in insular environments.  相似文献   

16.
Many ecological hypotheses have been widely used to explain species richness variation across the globe. We investigated lizard species richness patterns in China, and identified areas of high species richness. Furthermore, we tested hypotheses concerning the relationships between lizard richness and environmental variables. A large data including 30,902 records of point locality data for 151 lizard species occurring in China were retrieved from Herpetology museums of CIB/CAS and other museums through HerpNET, and published sources, and then predicted distributions maps were generated using ecological niche modeling. We overlaid all species prediction maps into a composite map to describe species richness patterns. A multiple regression analysis using eigenvector-based spatial filtering (SEVM) was performed to examine the best environmental predictors of species richness. Richness peaked mainly in southern China located in the Oriental realm. Our best multiple regression models explained a total of 80.1% variance of lizard richness (r2 = 0.801; F = 203.47; P < 0.001). Among related factors in shaping species richness distribution, the best environmental predictors of species richness were: frost-day frequency, elevation, vegetation, and wet-day frequency. Based on models selection, our results revealed that underlying mechanisms related to different ecological hypotheses might work together and best explain lizard richness in China. We are in an initial step to develop a large data set on species richness, and provide the necessary conservation implications from habitat loss. Additional studies that test species richness at different geographical scale are required to better understand the factors that may influence the species richness distribution in East Asia.  相似文献   

17.
Mountains are among the most powerful natural gradients for testing ecological and evolutionary responses of biota to environmental influences because differences in climate and plant structure occur over short spatial scales. We describe the spatiotemporal distribution patterns and drives of fruit‐feeding butterfly diversity in the mountainous region of Serra do Cipó, Minas Gerais, Brazil. Seven elevations from 822 to 1,388 m a.s.l. were selected for evaluating the effects of abiotic factors and vegetation characteristics on butterfly diversity. A total of 44 fruit‐feeding butterfly species were recorded in a two‐year study. Species richness (local and regional) of fruit‐feeding butterflies decreased with increasing elevation. The interaction between temperature or humidity and precipitation influenced the abundance and β‐diversity of butterflies in the elevation gradient, whereas β‐diversity decreased with increasing plant richness. Butterfly richness (local and regional) and β‐diversity varied with the sampling period, with fewer species in July (2012 and 2013), the dry period, as expected for Neotropical insects. β‐Diversity in space and time was due to species replacement (turnover), indicating that butterfly composition differs throughout the mountain and over time. In summary, climate and plant richness largely influence butterfly diversity in the elevational gradient. Climatic changes in conjunction with increasing anthropic impacts on mountainous regions of southeast Brazil will likely influence the community of mountaintop butterflies in the Espinhaço Mountain Range. Abstract in Portuguese is available with online material.  相似文献   

18.
Biological invasions often have contrasting consequences with reports of invasions decreasing diversity at small scales and facilitating diversity at large scales. Thus, previous literature has concluded that invasions have a fundamental spatial scale‐dependent relationship with diversity. Whether the scale‐dependent effects apply to vertebrate invaders is questionable because studies consistently report that vertebrate invasions produce different outcomes than plant or invertebrate invasions. Namely, vertebrate invasions generally have a larger effect size on species richness and vertebrate invaders commonly cause extinction, whereas extinctions are rare following invertebrate or plant invasions. In an agroecosystem invaded by a non‐native ungulate (i.e., feral swine, Sus scrofa), we monitored species richness of native vertebrates in forest fragments ranging across four orders of magnitude in area. We tested three predictions of the scale‐dependence hypothesis: (a) Vertebrate species richness would positively increase with area, (b) the species richness y‐intercept would be lower when invaded, and (c) the rate of native species accumulation with area would be steeper when invaded. Indeed, native vertebrate richness increased with area and the species richness was 26% lower than should be expected when the invasive ungulate was present. However, there was no evidence that the relationship was scale dependent. Our data indicate the scale‐dependent effect of biological invasions may not apply to vertebrate invasions.  相似文献   

19.
We explore the effects of biotic and abiotic factors on the population demography of frillneck lizards (Chlamydosaurus kingii) in the Australian wet‐dry tropics. Annual growth rates of males were significantly higher across all body sizes compared to females, resulting in a significant larger maximum body size in males. Both male and female lizards were highly philopatric and 81% of the among‐year recapture distances were less than 200 m. Juvenile and adult frillnecks were subjected to low but highly variable annual survival rates. Both proportion of juveniles and relative proportion of reproductive females showed extensive among‐year variations. No relationship was, however, observed between proportion of gravid females and that of juveniles captured during the subsequent year. High rainfall in January was negatively correlated with recruitment most likely caused by increased egg/embryo mortality due to flooding of nest sites. We therefore suggest that the lack of association between female reproduction and juvenile recruitment was due to the effects of stochastic variation in January rainfall. Lizard numbers increased during the first five years of the study followed by a decline during the subsequent four years. Our analyses show that annual variation in survival constituted the main determinant in driving the annual change in frillneck numbers. Surprisingly, no relationship was observed between fillneck population dynamics and annual variation in juvenile recruitment. We suggest that the 7‐years over which these analyses were conducted were insufficient to detect any significant effects of recruitment on lizard numbers, demonstrating the need for long‐term studies to accurately document vertebrate population demographic processes in areas experiencing stochastic variations rainfall such as the Australian wet‐dry tropics.  相似文献   

20.
生物多样性的大尺度空间分布格局及其形成机制一直是生态学和生物地理学的核心内容。黄河流域是我国重要的生态屏障, 明确该区域动植物多样性分布格局及其影响因素, 对我国黄河流域生态保护和高质量发展具有重要意义。本研究通过收集黄河流域被子植物和陆栖脊椎动物分布数据, 结合气候、环境异质性和人类活动等信息, 探讨了黄河流域被子植物和陆栖脊椎动物物种丰富度格局及其主要影响因素。结果表明, 黄河流域被子植物和陆栖脊椎动物物种丰富度在区域尺度具有相似的分布格局: 南部山地动植物物种丰富度最高, 而东部高寒区和北部干旱区物种丰富度最低。回归树模型表明, 冠层高度范围和净初级生产力范围分别是黄河流域被子植物和陆栖脊椎动物物种丰富度最重要的预测因子; 当移除空间自相关影响后, 环境异质性和气候因子依然对区域尺度的动植物物种丰富度具有较高且相似的解释度。表明环境异质性和气候共同决定了黄河流域被子植物和陆栖脊椎动物物种丰富度格局, 而人类使用土地面积并不是影响黄河流域动植物物种丰富度格局的主要因子。因此, 在未来的研究中若针对不同区域筛选出更精准的环境驱动因子或选用更多不同类别的环境异质性因子进行分析, 将有助于更深入理解物种多样性格局的成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号