首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioresistance is the main obstacle in the clinical management of nasopharyngeal carcinoma (NPC). linc00312 is deregulated in a number of human cancers, including NPC. However, the detailed functions and underlying mechanisms of linc00312 in regulating radiosensitivity of NPC remains unknown. In this study, cox regression analysis was used to assess the association between linc00312 and NPC patients’ survival after radiotherapy. Our results reveal that linc00312 is significantly down-regulated in NPC tissues and patients with higher expression of linc00312 are significantly associated with longer overall survival and better short-term radiotherapy efficacy. Overexpression of linc00312 could increase the sensitivity of NPC cells to ionizing radiation, as indicated by clonogenic survival assay, comet assay, and flow cytometry. Mechanistically, RNA pull down and RNA immunoprecipitation were performed to investigate the binding proteins of linc00312. linc00312 directly binds to DNA-PKcs, hinders the recruitment of DNA-PKcs to Ku80, and inhibits phosphorylation of AKT–DNA–PKcs axis, therefore inhibiting the DNA damage signal sensation and transduction in the NHEJ repair pathway. In addition, linc00312 impairs DNA repair and cell cycle control by suppressing MRN–ATM–CHK2 signal and ATR–CHK1 signal. In summary, we identified DNA-PKcs as the binding protein of linc00312 and revealed a novel mechanism of linc00312 in the DNA damage response, providing evidence for a potential therapeutic strategy in NPC.Subject terms: Head and neck cancer, Non-homologous-end joining, Long non-coding RNAs, Prognostic markers  相似文献   

2.
Functional, noncoding RNA of about 200 nucleotides in length are known as long noncoding RNA (lncRNA). Advances in -omics have revolutionized the information with respect to the coding and noncoding regions of the genome. Several studies have illustrated the role of lncRNA in cell growth and cancer. Profiling and bioinformatic studies of laryngeal cancer has identified LINC-PINT as one of the lncRNA. However, the functional aspects of the deregulation have not been studied in laryngeal tumors. In this study, LINC-PINT expression in normal and tumor tissues were studied. Using a bioinformatic approach, microRNA (miRNA) targets of LINC-PINT and gene targets of the miRNA were determined. The impact of LINC-PINT on cell proliferation and chemoresistance was determined. Further through a set of silencing and re-expression studies phenotype rescue was studied. LINC-PINT expression was downregulated in laryngeal tumors. LINC-PINT targeted miR-425-5p by three sites. miR-425-5p also targeted PTCH1 a protein of the Hedgehog pathway. Downregulation of LINC-PINT was associated with increased cancer stemness and chemoresistance to cisplatin. Our results indicate a probable role of LINC-PINT in the pathology of laryngeal tumors. LINC-PINT re-expression in laryngeal tumors may be explored for reversion of cancer cell stemness and also for rescue of drug resistance phenotype.  相似文献   

3.
Hepatocellular carcinoma (HCC) is a frequent and deadly disease worldwide. The absence of effective therapies when the tumor is surgically unresectable leads to an extremely poor outcome of HCC patients. Thus, it is mandatory to elucidate the molecular pathogenesis of HCC in order to develop novel therapeutic strategies against this pernicious tumor. Mounting evidence indicates that suppression of the DNA damage response machinery might be deleterious for the survival and growth of the tumor cells. In particular, DNA dependent protein kinase catalytic subunit (DNA-PKcs), a major player in the non-homologous end-joining (NHEJ) repair process, seems to represent a valuable target for innovative anti-neoplastic therapies in cancer. DNA-PKcs levels are strongly upregulated and associated with a poor clinical outcome in various tumor types, including HCC. Importantly, DNA-PKcs not only protects tumor cells from harmful DNA insults coming either from the microenvironment or chemotherapeutic drug treatments, but also possesses additional properties, independent from its DNA repair activity, that provide growth advantages to cancer cells. These properties (metabolic and gene reprogramming, invasiveness and metastasis, resistance to apoptosis, etc.) have started to be elucidated. In the present review, we summarize the physiologic and oncogenic roles of DNA-PKcs, with a special emphasis on liver cancer. In particular, this work focuses on the molecular mechanism whereby DNA-PKcs exerts its pro-tumorigenic activity in cancer cells. In addition, the upstream regulator of DNA-PKcs activation as well as its downstream effectors thus far identified are illustrated. Furthermore, the potential therapeutic strategies aimed at inhibiting DNA-PKcs activity in HCC are discussed.  相似文献   

4.
Radioresistance‐induced residual and recurrent tumours are the main cause of treatment failure in nasopharyngeal carcinoma (NPC). Thus, the mechanisms of NPC radioresistance and predictive markers of NPC prognosis and radioresistance need to be investigated and identified. In this study, we identified RPA3 as a candidate radioresistance marker using RNA‐seq of NPC samples. In vitro studies further confirmed that RPA3 affected the radiosensitivity of NPC cells. Specifically, the overexpression of RPA3 enhanced radioresistance and the capacity for DNA repair of NPC cells, whereas inhibiting RPA3 expression sensitized NPC cells to irradiation and decreased the DNA repair capacity. Furthermore, the overexpression of RPA3 enhanced RAD51 foci formation in NPC cells after irradiation. Immunohistochemical assays in 104 NPC specimens and 21 normal epithelium specimens indicated that RPA3 was significantly up‐regulated in NPC tissues, and a log‐rank test suggested that in patients with NPC, high RPA3 expression was associated with shorter overall survival (OS) and a higher recurrence rate compared with low expression (5‐year OS rates: 67.2% versus 86.2%; 5‐year recurrence rates: 14.8% versus 2.3%). Moreover, TCGA data also indicated that high RPA3 expression correlated with poor OS and a high recurrence rate in patients with head and neck squamous cell carcinoma (HNSC) after radiotherapy. Taken together, the results of our study demonstrated that RPA3 regulated the radiosensitivity and DNA repair capacity of NPC cells. Thus, RPA3 may serve as a new predictive biomarker for NPC prognosis and radioresistance to help guide the diagnosis and individualized treatment of patients with NPC.  相似文献   

5.

Background

A major concern of cancer chemotherapy is the side effects caused by the non-specific targeting of both normal and cancerous cells by therapeutic drugs. Much emphasis has been placed on discovering new compounds that target tumour cells more efficiently and selectively with minimal toxic effects on normal cells.

Methodology/Principal Findings

The cytotoxic effect of thymoquinone, a component derived from the plant Nigella sativa, was tested on human glioblastoma and normal cells. Our findings demonstrated that glioblastoma cells were more sensitive to thymoquinone-induced antiproliferative effects. Thymoquinone induced DNA damage, cell cycle arrest and apoptosis in the glioblastoma cells. It was also observed that thymoquinone facilitated telomere attrition by inhibiting the activity of telomerase. In addition to these, we investigated the role of DNA-PKcs on thymoquinone mediated changes in telomere length. Telomeres in glioblastoma cells with DNA-PKcs were more sensitive to thymoquinone mediated effects as compared to those cells deficient in DNA-PKcs.

Conclusions/Significance

Our results indicate that thymoquinone induces DNA damage, telomere attrition by inhibiting telomerase and cell death in glioblastoma cells. Telomere shortening was found to be dependent on the status of DNA-PKcs. Collectively, these data suggest that thymoquinone could be useful as a potential chemotherapeutic agent in the management for brain tumours.  相似文献   

6.
DNA damage initiates signaling events through kinase cascades that result in cell cycle checkpoint control and DNA repair. However, it is not yet clear how the signaling pathways relay to DNA damage repair. Using the repeat region of checkpoint protein MDC1 (mediator of DNA damage checkpoint protein 1), we identified DNA-PKcs/Ku as MDC1-associated proteins. Here, we show that MDC1 directly interacts with the Ku/DNA-PKcs complex. Down-regulation of MDC1 resulted in defective phospho-DNA-PKcs foci formation and DNA-PKcs autophosphorylation, suggesting that MDC1 regulates autophosphorylation of DNA-PKcs following DNA damage. Furthermore, DNA-PK-dependent DNA damage repair is defective in cells depleted of MDC1. Taken together, these results suggest that the MDC1 repeat region is involved in protein-protein interaction with DNA-PKcs/Ku, and MDC1 regulates DNA damage repair by influencing DNA-PK autophosphorylation. Therefore, MDC1 acts not only as a mediator of DNA damage checkpoint but also as a mediator of DNA damage repair.  相似文献   

7.
The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this paper, we report that, in contrast to deoxyribonucleic acid (DNA)-dependent protein kinase catalytic subunit (DNA-PKcs)-null mice, knockin mice with the DNA-PKcs(3A/3A) allele, which codes for three alanine substitutions at the mouse Thr2605 phosphorylation cluster, die prematurely because of congenital bone marrow failure. Impaired proliferation of DNA-PKcs(3A/3A) HSCs is caused by excessive DNA damage and p53-dependent apoptosis. In addition, increased apoptosis in the intestinal crypt and epidermal hyperpigmentation indicate the presence of elevated genotoxic stress and p53 activation. Analysis of embryonic fibroblasts further reveals that DNA-PKcs(3A/3A) cells are hypersensitive to DNA cross-linking agents and are defective in both homologous recombination and the Fanconi anemia DNA damage response pathways. We conclude that phosphorylation of DNA-PKcs is essential for the normal activation of multiple DNA repair pathways, which in turn is critical for the maintenance of diverse populations of tissue stem cells in mice.  相似文献   

8.
DNA-PKcs-dependent signaling of DNA damage in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). In vertebrates, the first step in NHEJ is recruitment of the DNA-dependent protein kinase (DNA-PK) to DNA termini. DNA-PK consists of a catalytic subunit (DNA-PKcs) that is recruited to DNA ends by the Ku70/Ku80 heterodimer. Although Ku has been identified in a wide variety of organisms, to date DNA-PKcs has only been identified experimentally in vertebrates. Here, we report the identification of DNA-PK in the nonvertebrate Dictyostelium. Dictyostelium Ku80 contains a conserved domain previously implicated in recruiting DNA-PKcs to DNA and consistent with this observation, we have identified DNA-PKcs in the Dictyostelium genome. Disruption of the gene encoding Dictyostelium DNA-PKcs results in sensitivity to DNA DSBs and defective H2AX phosphorylation in response to this form of DNA damage. However, these phenotypes are only apparent when DNA damage is administered in G(1) phase of the cell cycle. These data illustrate a cell cycle-dependent requirement for Dictyostelium DNA-PK in signaling and combating DNA DSBs and represent the first experimental verification of DNA-PKcs in a nonvertebrate organism.  相似文献   

9.
Ionizing radiation (IR)-induced cellular damage is implicated in carcinogenesis as well as therapy of cancer. Advances in radiation therapy have led to the decrease in dosage and localizing the effects to the tumor; however, the development of radioresistance in cancer cells and radiation toxicity to normal tissues are still the major concerns. The development of radioresistance involves several mechanisms, including the activation of mitogenic and survival signaling, induction of DNA repair, and changes in redox signaling and epigenetic regulation. The current strategy of combining radiation with standard cytotoxic chemotherapeutic agents can potentially lead to unwanted side effects due to both agents. Thus agents are needed that could improve the efficacy of radiation killing of cancer cells and prevent the damage to normal cells and tissues caused by the direct and bystander effects of radiation, without have its own systemic toxicity. Chemopreventive phytochemicals, usually non-toxic agents with both cancer preventive and therapeutic activities, could rightly fit in this approach. In this regard, naturally occurring compounds, including curcumin, parthenolide, genistein, gossypol, ellagic acid, withaferin, plumbagin and resveratrol, have shown considerable potential. These agents suppress the radiation-induced activation of receptor tyrosine kinases and nuclear factor-κB signaling, can modify cell survival and DNA repair efficacy, and may potentiate ceramide signaling. These radiosensitizing and counter radioresistance mechanisms of phytochemicals in cancer cells are also associated with changes in epigenetic gene regulation. Because radioresistance involves multiple mechanisms, more studies are needed to discover novel phytochemicals having multiple mechanisms of radiosensitization and to overcome radioresistance of cancer cells. Pre-clinical studies are needed to address the appropriate dosage, timing, and duration of the application of phytochemicals with radiation to justify clinical trials. Nonetheless, some phytochemicals in combination with IR may play a significant role in enhancing the therapeutic index of cancer treatment.  相似文献   

10.
Telomeres are key structural elements for the protection and maintenance of linear chromosomes, and they function to prevent recognition of chromosomal ends as DNA double-stranded breaks. Loss of telomere capping function brought about by telomerase deficiency and gradual erosion of telomere ends or by experimental disruption of higher-order telomere structure culminates in the fusion of defective telomeres and/or the activation of DNA damage checkpoints. Previous work has implicated the nonhomologous end-joining (NHEJ) DNA repair pathway as a critical mediator of these biological processes. Here, employing the telomerase-deficient mouse model, we tested whether the NHEJ component DNA-dependent protein kinase catalytic subunit (DNA-PKcs) was required for fusion of eroded/dysfunctional telomere ends and the telomere checkpoint responses. In late-generation mTerc(-/-) DNA-PKcs(-/-) cells and tissues, chromosomal end-to-end fusions and anaphase bridges were readily evident. Notably, nullizygosity for DNA Ligase4 (Lig4)--an additional crucial NHEJ component--was also permissive for chromosome fusions in mTerc(-/-) cells, indicating that, in contrast to results seen with experimental disruption of telomere structure, telomere dysfunction in the context of gradual telomere erosion can engage additional DNA repair pathways. Furthermore, we found that DNA-PKcs deficiency does not reduce apoptosis, tissue atrophy, or p53 activation in late-generation mTerc(-/-) tissues but rather moderately exacerbates germ cell apoptosis and testicular degeneration. Thus, our studies indicate that the NHEJ components, DNA-PKcs and Lig4, are not required for fusion of critically shortened telomeric ends and that DNA-PKcs is not required for sensing and executing the telomere checkpoint response, findings consistent with the consensus view of the limited role of DNA-PKcs in DNA damage signaling in general.  相似文献   

11.
Constitutive activation of the Rearranged during Transfection (RET) proto-oncogene leads to the development of MEN2A medullary thyroid cancer (MTC). The relatively clear genotype/phenotype relationship seen with RET mutations and the development of MEN2A is unusual in the fact that a single gene activity can drive the progression towards metastatic disease. Despite knowing the oncogene responsible for MEN2A, MTC, like most tumors of neural crest origin, remains largely resistant to chemotherapy. Constitutive activation of RET in a SK-N-MC cell line model reduces cell sensitivity to chemotherapy. In an attempt to identify components of the machinery responsible for the observed RET induced chemoresistance, we performed a proteomic screen of histones and associated proteins in cells with a constitutively active RET signaling pathway. The proteomic approach identified DNA-PKcs, a DNA damage response protein, as a target of the RET signaling pathway. Active DNA-PKcs, which is phosphorylated at site serine 2056 and localized to chromatin, was elevated within our model. Treatment with the RET inhibitor RPI-1 significantly reduced s2056 phosphorylation in RET cells as well as in a human medullary thyroid cancer cell line. Additionally, inhibition of DNA-PKcs activity diminished the chemoresistance observed in both cell lines. Importantly, we show that activated DNA-PKcs is elevated in medullary thyroid tumor samples and that expression correlates with expression of RET in thyroid tumors. These results highlight one mechanism by which RET signaling likely primes cells for rapid response to DNA damage and suggests DNA-PKcs as an additional target in MTC.  相似文献   

12.
Induction of DNA damage by ionizing radiation (IR) and/or cytotoxic chemotherapy is an essential component of cancer therapy. The ataxia telangiectasia group D complementing gene (ATDC, also called TRIM29) is highly expressed in many malignancies. It participates in the DNA damage response downstream of ataxia telangiectasia-mutated (ATM) and p38/MK2 and promotes cell survival after IR. To elucidate the downstream mechanisms of ATDC-induced IR protection, we performed a mass spectrometry screen to identify ATDC binding partners. We identified a direct physical interaction between ATDC and the E3 ubiquitin ligase and DNA damage response protein, RNF8, which is required for ATDC-induced radioresistance. This interaction was refined to the C-terminal portion (amino acids 348–588) of ATDC and the RING domain of RNF8 and was disrupted by mutation of ATDC Ser-550 to alanine. Mutations disrupting this interaction abrogated ATDC-induced radioresistance. The interaction between RNF8 and ATDC, which was increased by IR, also promoted downstream DNA damage responses such as IR-induced γ-H2AX ubiquitination, 53BP1 phosphorylation, and subsequent resolution of the DNA damage foci. These studies define a novel function for ATDC in the RNF8-mediated DNA damage response and implicate RNF8 binding as a key determinant of the radioprotective function of ATDC.  相似文献   

13.
Objectives: Radiotherapy has played a limited role in the treatment of non-small cell lung cancer (NSCLC) due to the risk of tumour radioresistance. We previously established the radioresistant non-small cell lung cancer (NSCLC) cell line H460R. In this study, we identified differentially expressed genes between these radioresistant H460R cells and their radiosensitive parent line. We further evaluated the role of a differentially expressed gene, ITGB1, in NSCLC cell radioresistance and as a potential target for improving radiosensitivity.Materials and Methods: The radiosensitivity of NSCLC cells was evaluated by flow cytometry, colony formation assays, immunofluorescence, and Western blotting. Bioinformatics assay was used to identify the effect of ITGB1 and YAP1 expression in NSCLC tissues.Results: ITGB1 mRNA and protein expression levels were higher in H460R than in the parental H460 cells. We observed lower clonogenic survival and cell viability and a higher rate of apoptosis of ITGB1-knockdown A549 and H460R cells than of wild type cells post-irradiation. Transfection with an ITGB1 short hairpin (sh) RNA enhanced radiation-induced DNA damage and G2/M phase arrest. Moreover, ITGB1 induced epithelial-mesenchymal transition (EMT) of NSCLC cells. Silencing ITGB1 suppressed the expression and intracellular translocation of Yes-associated protein 1 (YAP1), a downstream effector of ITGB1.Conclusions: ITGB1 may induce radioresistance via affecting DNA repair and YAP1-induced EMT. Taken together, our data suggest that ITGB1 is an attractive therapeutic target to overcome NSCLC cell radioresistance.  相似文献   

14.
Members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, including the ATM, DNA-PKcs, Atr, and Trrap proteins, function in signal transduction pathways that activate the DNA damage response. PIKK proteins contain a conserved C-terminal FAT/kinase domain/FATC domain structure. The FATC domain of ATM mediates the interaction between ATM and Tip60, a histone acetyltransferase that regulates activation of ATM. Here, we examined whether the FATC domains of DNA-PKcs, Atr, and Trrap were also able to interact with Tip60. Deletion of the FATC domain of ATM blocked the interaction between ATM and Tip60 and suppressed the activation of ATM kinase activity by DNA damage. Replacement of the FATC domain of ATM with the FATC domains of DNA-PKcs, Atr, or Trrap restored the activation of ATM and its association with Tip60. These results indicate that the FATC domains of DNA-PKcs, Atr, Trrap, and ATM are functionally equivalent. Immunoprecipitation experiments demonstrated that Tip60 is constitutively associated with DNA-PKcs and that the histone acetyltransferase activity associated with DNA-PKcs is up-regulated by DNA damage. When Tip60 expression was suppressed by small interfering RNA, the activation of DNA-PKcs (measured by autophosphorylation of DNA-PKcs at serine 2056 and threonine 2609) was inhibited, demonstrating a key role for Tip60 in the activation of DNA-PKcs by DNA damage. The conserved FATC domain of PIKK proteins may therefore function as a binding domain for the Tip60 histone acetyltransferase. Further, the ability of Tip60 to regulate the activation of both ATM and DNA-PKcs in response to DNA damage demonstrates that Tip60 is a key component of the DNA damage-signaling network.  相似文献   

15.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is rapidly phosphorylated at the Thr-2609 cluster and Ser-2056 upon ionizing radiation (IR). Furthermore, DNA-PKcs phosphorylation at both regions is critical for its role in DNA double strand break (DSB) repair as well as cellular resistance to radiation. IR-induced DNA-PKcs phosphorylation at Thr-2609 and Ser-2056, however, exhibits distinct kinetics indicating that they are differentially regulated. Although DNA-PKcs autophosphorylates itself at Ser-2056 after IR, we have reported here that ATM mediates DNA-PKcs phosphorylation at Thr-2609 as well as at the adjacent (S/T)Q motifs within the Thr-2609 cluster. In addition, our data suggest that DNA-PKcs- and ATM-mediated DNA-PKcs phosphorylations are cooperative and required for the full activation of DNA-PKcs and the subsequent DSB repair. Elimination of DNA-PKcs phosphorylation at both regions severely compromises radioresistance and DSB repair. Finally, our result provides a possible mechanism for the direct involvement of ATM in non-homologous end joining-mediated DSB repair.  相似文献   

16.
17.
Two major complementary double-strand break (DSB) repair pathways exist in vertebrates, homologous recombination (HR), which involves Rad54, and non-homologous end-joining, which requires the DNA-dependent protein kinase (DNA-PK). DNA-PK comprises a catalytic subunit (DNA-PKcs) and a DNA-binding Ku70 and Ku80 heterodimer. To define the activities of individual DNA-PK components in DSB repair, we targeted the DNA-PKcs gene in chicken DT40 cells. DNA-PKcs deficiency caused a DSB repair defect that was, unexpectedly, suppressed by KU70 disruption. We have shown previously that genetic ablation of Ku70 confers RAD54-dependent radioresistance on S-G(2) phase cells, when sister chromatids are available for HR repair. To test whether direct interference by Ku70 with HR might explain the Ku70(-/-)/DNA-PKcs(-/-/-) radioresistance, we monitored HR activities directly in Ku- and DNA-PKcs-deficient cells. The frequency of intrachromosomal HR induced by the I-SceI restriction enzyme was increased in the absence of Ku but not of DNA-PKcs. Significantly, abrogation of HR activity by targeting RAD54 in Ku70(-/-) or DNA-PKcs(-/-/-) cells caused extreme radiosensitivity, suggesting that the relative radioresistance seen with loss of Ku70 was because of HR-dependent repair pathways. Our findings suggest that Ku can interfere with HR-mediated DSB repair, perhaps competing with HR for DSB recognition.  相似文献   

18.
The ability of cells to respond and repair DNA damage is fundamental for the maintenance of genomic integrity. Ex vivo culturing of surgery-derived human tissues has provided a significant advancement to assess DNA damage response (DDR) in the context of normal cytoarchitecture in a non-proliferating tissue. Here, we assess the dependency of prostate epithelium DDR on ATM and DNA-PKcs, the major kinases responsible for damage detection and repair by nonhomologous end-joining (NHEJ), respectively. DNA damage was caused by ionizing radiation (IR) and cytotoxic drugs, cultured tissues were treated with ATM and DNA-PK inhibitors, and DDR was assessed by phosphorylation of ATM and its targets H2AX and KAP1, a heterochromatin binding protein. Phosphorylation of H2AX and KAP1 was fast, transient and fully dependent on ATM, but these responses were moderate in luminal cells. In contrast, DNA-PKcs was phosphorylated in both luminal and basal cells, suggesting that DNA-PK-dependent repair was also activated in the luminal cells despite the diminished H2AX and KAP1 responses. These results indicate that prostate epithelial cell types have constitutively dissimilar responses to DNA damage. We correlate the altered damage response to the differential chromatin state of the cells. These findings are relevant in understanding how the epithelium senses and responds to DNA damage.Key words: DNA damage, prostate, γH2AX, ATM, DNA-PK  相似文献   

19.
20.
Polymorphic variants of DNA repair genes can increase the carcinogenic potential of exposure to ionizing radiation. Two single nucleotide polymorphisms (SNPs) in Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), have been identified in BALB/c mice and linked to reduced DNA-PKcs activity and mammary cancer susceptibility. We examined three additional mouse strains to better define the roles of the BALB/c Prkdc SNPs (R2140C and M3844V). One is a congenic strain (C.B6) that has the C57BL/6 Prkdc allele on a BALB/c background, and the other is a congenic strain (B6.C) that has the BALB/c variant Prkdc allele on a C57BL/6 background. We also examined the LEWES mouse strain, which possesses only one of the BALB/c Prkdc SNPs (M3844V). Our results demonstrate that both Prkdc SNPs are responsible for deficient DNA-PKcs protein expression, DNA repair and telomere function, while the LEWES SNP affects only DNA-PKcs expression and repair capacity. These studies provide insight into the separation of function between the two BALB/c SNPs as well as direct evidence that SNPs positioned within Prkdc can significantly influence DNA-PKcs function involving DNA repair capacity, telomere end-capping, and potentially cancer susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号