首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary Disposal of rice straw through soil incorporation may contribute to anaerobic fermentation processes producing concentrations of organic acids which are toxic to rice plants. The present studies were conducted to determine the kind, amount, and time of production of organic acids as a function of rice straw additions (0, 0.25, and 0.5 per cent of soil weight), and temperature (10, 20, and 30°C). Nine samples were taken at 5, and 10 day intervals for 60 days to measure concentrations of organic acids.Only acetic acid was detected in the incubated soil with rice straw added. The amount and peak production of acetic acid increased with the rate of straw added and temperature. Acetic acid concentrations varied between 10.6 and 22.7 eq/20 g soil, and the peak production occurred between 15 and 20 days after incubation. Organic acids were not found in sufficient amounts to affect the growth of rice plants grown in soils that were not previously puddled or in a reduced state.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.  相似文献   

2.
Summary Soils which are flooded for lowland rice culture shift from aerobic to anaerobic organic matter transformations. Anaerobic carbon transformations, involving chiefly rice crop residues, are characterized by the formation of various organic acids. These may accumulate after prolonged incubations in amounts sufficient to be toxic to developing rice seedlings. In these experiments the effects of acetic, propionic, and butyric acids were studied at 1, 5, and 10 mN on the growth and nutrition of 14 day old (Oryza sativa L.) cultivar Earlirose rice seedlings. Nutrient solutions were used in the experiments with pH controlled at 6.5 in one experiment and in another the acid concentrations were allowed to attain equilibrium pH with the nutrient solution (1 mN=4.6, 5 mN=3.9, and 10 mN=3.8).Root elongation of rice seedlings was decreased by increased organic acid concentrations at both pH's. New root initiation was totally inhibited at all organic acid concentrations at equilibrium pH, and at 10 mN with pH 6.5. New root initiation at 1 and 5 mN at pH 6.5 allowed increased seedling dry matter production, whereas it was reduced in all other treatments. Plant height and weight were also decreased by increased acid concentrations. At pH 6.5 the plants showed no specific symptoms of organic acid toxicity except reduced growth. At equilibrium pH values specific symptoms were observed. At 1 mN, the seedlings withered, similar to desiccation; at 5 mN the leaf tips showed symptoms similar to bronzing; and at 10 mN the seedlings died after 24 hours.Uptake of both P and K by roots were reduced by increased concentrations of all organic acids at both pH's. P concentration and total uptake were reduced in the shoots with all treatments, whereas the effects on K in shoots were not consistent.The magnitude of organic acid toxicity is a function of the kind, concentration and the degree of dissociation of the acid. Increased media pH reduces the toxicity of the acid concentrations.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.  相似文献   

3.
Summary The effect of S fertilization on symbiotic N2 fixation was measured with the15N technique and the N difference method in a lysimeter study using Josephine loam (Typic Haploxurults). Nitrogen fixation by subclover (Trifolium subterraneum L.) was strongly enhanced by added S. The association of soft chess (Bromus mollis L.) or filaree (Erodium botrys (Cav.) Bertol.) with subclover increased the percentage of N in subclover that was fixed, with the results that N2 fixation was increased beyond that due to the mere increase in subclover biomass. Nitrogen fixation estimates by15N dilution and N difference methods were highly correlated (r2=0.97), and S fertilizer did not result in any significant differences in N2-fixation estimation by the two methods. Both methods were useful in distinguishing between soil N uptake and N2 fixation where S applications produced highly significant increases in both uptake and fixation. Application of sulfur fertilizers to much annual rangeland has the potential to increase pasture productivity through enhanced N2 fixation. Contribution of the University of California Hopland Field Station and Department of Agronomy and Range Science, Univ. of California, Davis, CA 95616.  相似文献   

4.
Summary Competition for S and N was studied on free draining lysimeters seeded to associations of three annual forages on Josephine loam (Typic Haploxerults), an important soil for revegetation to rangeland production. Forage yields increased and the botanical composition shifted toward subclover (Trifolium subterraneum L.) with added S. Sulfate uptake and plant S concentration were increased as a function of the S applied. Forage yields were related to plant S concentration and N:S ratios. Subclover and filaree (Erodium botrys (Cav.) Bertol.) obtained a larger proportion of their S from fertilizer-S than did soft chess (Bromus mollis L.). Total S uptake was largely from the applied fertilizer, 39% at the intermediate S level and 78% at high S. The replacement series design of the experiment and the use of labeled S and N permitted calculation of competition coefficients for fertilizer S, total S, soil N, and total N uptake for the species in pairwise associations. Sulfur was the factor limiting to subclover where S was not applied, and N was the limiting factor to soft chess and filaree in mixtures with subclover at high S where subclover was able to fix most of its own N. In the mixture of soft chess and filaree competition for S and N was about equally intense for both nutrients at all S levels, and filaree was dominant consistently. Comparison of two methods for estimating the fate of fertilizer S showed that differences in sulfur uptake and leachate losses over the controls provided significantly higher values for sulfur recovery than estimates based on the fate of35S. Contribution of the University of California Hopland Field Station and Dept. of Agronomy and Range Science, Univ. of California, Davis, CA 95616.  相似文献   

5.
Using molecular simulations, we studied a diverse collection of zeolite–imidazolate frameworks (ZIFs) to evaluate their performances in adsorption- and membrane-based gas separations. Molecular simulations were performed for both single-component gases (CH4, CO2, H2 and N2) and binary gas mixtures (CO2/CH4, CO2/N2, CO2/H2 and CH4/H2) to predict the intrinsic and mixture selectivities of ZIFs. These two selectivities were compared to discuss the importance of multi-component mixture effects on making predictions about the separation performance of a material. Gas separation performances of ZIFs were compared with other nanoporous materials and our results showed that several ZIFs can outperform well-known zeolites and metal–organic frameworks in CO2 separations. Several other properties of ZIFs such as gas permeability, working capacity and sorbent selection parameter were computed to identify the most promising materials in adsorption- and membrane-based separation of CO2/CH4, CO2/N2, CO2/H2 and CH4/H2.  相似文献   

6.
Indirect emission of nitrous oxide (N2O), associated with nitrogen (N) leaching and runoff from agricultural lands is a major source of atmospheric N2O. Recent studies have shown that carbon dioxide (CO2) and methane (CH4) are also emitted via these pathways. We measured the concentrations of three dissolved greenhouse gases (GHGs) in the subsurface drainage from field lysimeter that had a shallow groundwater table. Aboveground fluxes of CH4 and N2O were monitored using an automated closed‐chamber system. The annual total emissions of dissolved and aboveground GHGs were compared among three cropping systems; paddy rice, soybean and wheat, and upland rice. The annual drainage in the paddy rice, the soybean and wheat, and the upland rice plots was 1435, 782, and 1010 mm yr?1, respectively. Dissolved CO2 emissions were highest in the paddy rice plots, and were equivalent to 1.05–1.16% of the carbon storage in the topsoil. Dissolved CH4 emissions were also higher in the paddy rice plots, but were only 0.03–0.05% of the aboveground emissions. Dissolved N2O emissions were highest in the upland rice plots, where leached N was greatest due to small crop biomass. In the soybean and wheat plots, large crop biomass, due to double cropping, decreased the drainage volume, and thus decreased dissolved GHG emissions. Dissolved N2O emissions from both the soybean and wheat plots and the upland rice plots were equivalent to 50.3–67.3% of the aboveground emissions. The results indicate that crop type and rotation are important factors in determining dissolved GHG emissions in the drainage from a crop field.  相似文献   

7.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

8.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland   总被引:1,自引:0,他引:1  
Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well‐drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell‐shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2‐equivalents.  相似文献   

9.
Fertilized rice paddy soils emit methane while flooded, emit nitrous oxide during flooding and draining transitions, and can be a source or sink of carbon dioxide. Changing water management of rice paddies can affect net emissions of all three of these greenhouse gases. We used denitrification–decomposition (DNDC), a process‐based biogeochemistry model, to evaluate the annual emissions of CH4, N2O, and CO2 for continuously flooded, single‐, double‐, and triple‐cropped rice (three baseline scenarios), and in further simulations, the change in emissions with changing water management to midseason draining of the paddies, and to alternating crops of midseason drained rice and upland crops (two alternatives for each baseline scenario). We used a set of first‐order atmospheric models to track the atmospheric burden of each gas over 500 years. We evaluated the dynamics of the radiative forcing due to the changes in emissions of CH4, N2O, and CO2 (alternative minus baseline), and compared these with standard calculations of CO2‐equivalent emissions using global warming potentials (GWPs). All alternative scenarios had lower CH4 emissions and higher N2O emissions than their corresponding baseline cases, and all but one sequestered carbon in the soil more slowly. Because of differences in emissions, in radiative forcing per molecule, and in atmospheric time constants (lifetimes), the relative radiative impacts of CH4, N2O, and CO2 varied over the 500‐year simulations. In three of the six cases, the initial change in radiative forcing was dominated by reduced CH4 emissions (i.e. a cooling for the first few decades); in five of the six cases, the long‐term radiative forcing was dominated by increased N2O emissions (i.e. a warming over several centuries). The overall complexity of the radiative forcing response to changing water management could not easily be captured with conventional GWP calculations.  相似文献   

10.
Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time‐consuming. The photo‐acoustic infrared gas monitoring system (PAS) with on‐line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2O, CO2, and CH4 fluxes measured by GC and PAS from agricultural fields under the rice–wheat and maize–wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS‐CH4 (PCH4) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm?3 increase in water vapor. The daily CO2, N2O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93–98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC‐ and PAS‐N2O (PN2O) fluxes in wheat and maize were not different but the PAS‐CO2 (PCO2) flux in wheat was 14–39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2O fluxes across N levels were higher than those of GC‐CH4 and GC‐N2O fluxes by about 2‐ and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity.  相似文献   

11.
The magnitude, temporal, and spatial patterns of soil‐atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil‐atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean±SD) were 7.7±4.6 Mg CO2‐C ha?1 yr?1, 3.2±1.2 kg N2O‐N ha?1 yr?1, and 3.4±0.9 kg CH4‐C ha?1 yr?1, respectively. The climate was warm and wet from April through September 2003 (the hot‐humid season) and became cool and dry from October 2003 through March 2004 (the cool‐dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot‐humid season and low rates in the cool‐dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool‐dry season and higher N2O emission rates were often observed in the hot‐humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17–44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer.  相似文献   

12.
Summary The effects of P and Mn on growth response and uptake of Fe, Mn and P by grain sorghum were investigated using nutrient culture. High P and Mn concentrations in solution (greater than 40 and 1 mg/l for P and Mn, respectively) markedly reduced plant height and shoot and root dry weight of 4-week-old sorghum plants. High Mn concentrations in solution increased the concentrations of Mn and P in shoot tissue and uptake of Mn, but depressed the uptake of P. High levels of P enhanced Mn uptake by sorghum and accentuated Mn toxicity at low Mn levels. The tissue Fe and total uptake of Fe were both reduced markedly by the high levels of P and Mn concentrations in solution. The increases of P, Mn and Fe concentrations in root tissue with a concomitant decrease of Fe in shoots suggested that the translocation of Fe from roots to shoots was hindered under high P and Mn conditions. Since coating occurred on root surfaces and intensified with increasing Mn concentrations in the substrate, part of the reduction of Fe in shoots could be attributed to the formation of high valent manganese oxides on the root surfaces which may retain Fe and reduce its absorption by sorghum.Contribution from the Department of Agronomy and Range Sci., University of California, Davis, CA.  相似文献   

13.
We studied the distribution of dissolved O2, CO2, CH4, and N2O in a coastal swamp system in Thailand with the goal to characterize the dynamics of these gases within the system. The gas concentrations varied spatially and seasonally in both surface and ground waters. The entire system was a strong sourcefor CO2 and CH4, and a possible sink for atmospheric N2O. Seasonal variation in precipitation primarily regulated the redox conditions in the system. However, distributions of CO2, CH4, and N2O in the river that received swamp waters were not always in agreement with redox conditions indicated by dissolvedO2 concentrations. Sulfate production through pyriteoxidation occurred in the swamp with thin peat layerunder aerobic conditions and was reflected by elevatedSO 4 2– /Cl in the river water. When SO 4 2– /Cl was high, CO2 and CH4 concentrations decreased, whereas the N2O concentration increased. The excess SO 4 2– in the river water was thus identified as a potential indicator for gas dynamics in this coastal swamp system.  相似文献   

14.
Straw incorporation at 2 and 4 t/ha with or without CO2-enrichment at 1000 mg/l from flowering to pod development stage in open top chambers markedly influenced the N2-fixation and yield of field grown soybeans. N2-ase activity of soybean root nodules as determined by acetylene reduction technique indicated that (1) straw on average gave significantly 141 and 197% higher N2-ase activity at 2 and 4 t/ha respectively than controls; (2) CO2 treatments on average increased the activity by 24% over those without CO2 and (3) 4 t/ha straw alone or straw at 2 or 4 t/ha in conjunction with CO2 increased the N2-ase activity four-fold over the control. High correlations were observed between fresh weights of nodules and N2-ase activity and between fresh weights of nodules and yield and between N2-ase activity and yield. This study confirms the earlier investigation that straw could be considered to provide a partial substitute for expensive CO2-enrichment treatment for improving N2(C2H2) fixation and thereby the general growth and yield of crops.Department of Agronomy, University of Agricultural Sciences, Hebbal, Bangalore, India  相似文献   

15.
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south‐eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O‐N ha?1 over the 2‐year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2‐year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4‐C ha?1 day?1 during extended dry periods to less than 2–5 g CH4‐C ha?1 day?1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4‐C ha?1 yr?1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one‐third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability.  相似文献   

16.
This study was conducted to determine reciprocal effects of low to high doses of nitrogenous fertilizer (N30, N40, N50, N60 and N70 — 30, 40, 50, 60 and 70 kg ha−1 respectively) and CO2 enriched environment on C and N partitioning in soybean (Glycine max (L.) Merril cv JS-335). Plants were grown from seedling emergence to maturity inside open top chambers under ambient, AC (350±50 mol mol−1) and elevated, EC (600±50 mol mol−1) CO2 and analyzed at seedling, vegetative, flowering, pod setting and maturity stages. Soybean responded to both CO2 enrichment and N supply. Leaves, stem and root reserves at different growth stages were analyzed for total C and N contents. Consistent increase in the C contents of the leaf, stem and root was observed under EC than in AC. N contents in the different plant parts were found to be decreased under EC-grown plants specially at seedling and vegetative stage despite providing N doses to the soil. Significant increase observed for C to N dry mass ratio under EC in the root, stems and leaves at seedling and vegetative stage was decreased in the middle and later growth stages possibly due to combined impact of N doses to the soil and increased N2 fixing activities due to EC conditions. Critical analysis of our findings reveals that the composition and partitioning of C and N of soybean under variable rates of N supply and CO2 enrichment alter according to need under altered metabolic process. These changes eventually may lead to alteration in uptake of not only N but other essential nutrients also under changing atmosphere.  相似文献   

17.
To investigate the effects of multiple environmental conditions on greenhouse gas (CO2, N2O, CH4) fluxes, we transferred three soil monoliths from Masson pine forest (PF) or coniferous and broadleaved mixed forest (MF) at Jigongshan to corresponding forest type at Dinghushan. Greenhouse gas fluxes at the in situ (Jigongshan), transported and ambient (Dinghushan) soil monoliths were measured using static chambers. When the transported soil monoliths experienced the external environmental factors (temperature, precipitation and nitrogen deposition) at Dinghushan, its annual soil CO2 emissions were 54% in PF and 60% in MF higher than those from the respective in situ treatment. Annual soil N2O emissions were 45% in PF and 44% in MF higher than those from the respective in situ treatment. There were no significant differences in annual soil CO2 or N2O emissions between the transported and ambient treatments. However, annual CH4 uptake by the transported soil monoliths in PF or MF was not significantly different from that at the respective in situ treatment, and was significantly lower than that at the respective ambient treatment. Therefore, external environmental factors were the major drivers of soil CO2 and N2O emissions, while soil was the dominant controller of soil CH4 uptake. We further tested the results by developing simple empirical models using the observed fluxes of CO2 and N2O from the in situ treatment and found that the empirical models can explain about 90% for CO2 and 40% for N2O of the observed variations at the transported treatment. Results from this study suggest that the different responses of soil CO2, N2O, CH4 fluxes to changes in multiple environmental conditions need to be considered in global change study.  相似文献   

18.
The effects of elevated concentrations of atmospheric CO2 on CH4 and N2O emissions from rice soil were investigated in controlled-environment chambers using rice plants growing in pots. Elevated CO2 significantly increased CH4 emission by 58% compared with ambient CO2. The CH4 emitted by plant-mediated transport and ebullition–diffusion accounted for 86.7 and 13.3% of total emissions during the flooding period under ambient level, respectively; and for 88.1 and 11.9% of total emissions during the flooding period under elevated CO2 level, respectively. No CH4 was emitted from plant-free pots, suggesting that the main source of emitted CH4 was root exudates or autolysis products. Most N2O was emitted during the first 3 weeks after flooding and rice transplanting, probably through denitrification of NO3 contained in the experimental soil, and was not affected by the CO2 concentration. Pre-harvest drainage suppressed CH4 emission but did not cause much N2O emission (< 10 μg N m−2 h−1) from the rice-plant pots at both CO2 concentrations.  相似文献   

19.
Even though a given mineral, for instance olivine, may contain only traces of dissolved H2O, CO2 and N2 the gases which evolve from its surface during heating comprise (a) highly reduced molecules such as H2, CH4, CmHn and more complex hydrocarbons, HCN and other N-bearing compounds (b) oxidized species in various degrees of oxidation from formaldehyde and CO to oxygen. These gases evolve sequentially besides H2O, CO2 and possibly N2, their relative amounts being controlled by experimental parameters such as the rate of heating. Preliminary indications of amino acids have been obtained by liquid extraction. The chemical complexity is a consequence of radical reactions between different solute species in the surface and the bulk of the mineral grains. Data for synthetic MgO and for mantle-derived olivine are presented.  相似文献   

20.
贾朋  高常军  李吉跃  周平  王丹  许小林 《生态学报》2018,38(19):6903-6911
为探索华南地区尾巨桉人工林和马占相思人工林地表温室气体的季节排放规律、排放通量和主控因子,采用静态箱-气相色谱法,对两种林型地表3种温室气体(CO_2、CH_4、N_2O)通量进行为期1年的逐月测定。结果表明:(1)尾巨桉人工林和马占相思人工林均为CO_2和N_2O的排放源,CH_4的吸收汇。马占相思林地表N_2O通量显著(P0.01)高于尾巨桉林,CO_2通量和CH_4通量无明显差异。(2)两种林型3种温室气体通量有着相似季节变化规律,地表CO_2通量均呈现雨季高旱季低的单峰规律;地表CH_4吸收通量表现为旱季高雨季低的单峰趋势;地表N_2O通量呈现雨季高旱季低且雨季内有两个峰值的排放规律。(3)地表CO_2、N_2O通量和土壤5 cm温度呈极显著(P0.01)正相关,3种温室气体地表通量同土壤含水量呈极显著(P0.01)或显著相关(P0.05)。(4)尾巨桉林和马占相思林温室气体年温室气体排放总量为31.014 t/hm~2和28.782 t/hm~2,均以CO_2排放占绝对优势(98.46%—99.15%),CH_4和N_2O处于次要地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号