首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine if loss of germinability in Pyrus betulaefolia seeds stored at 4°C and at room temperature is associated with a loss of membrane lipid peroxidation or changes in antioxidant enzyme activities. The results indicated that germination percentage clearly decreased when seeds were stored at room temperature rather than at 4°C from 6 to 12 months. Room-temperature storage of the pear stock seed for 12 months decreased germination to 15.52%, but germination percentage was not changed when seed was stored at 4°C for 12 months. MDA, a marker for membrane lipid peroxidation, increased significantly under room-temperature storage conditions. Antioxidant enzyme (SOD, POD, and CAT) activities were a good indicator of germination percentage in pear stock seeds. Antioxidant enzyme activities of pear stock seeds at 4°C were higher than antioxidant enzyme activities in seeds stored at room temperature from 6 to 12 months. Antioxidant enzyme activities of the pear stock seed decreased markedly under conditions of room-temperature storage from 6 to 12 months. The results of this study showed that long-term room-temperature storage was detrimental for maintaining the vigor of P. betulaefolia seeds. The mechanisms responsible for this outcome are a higher level of membrane lipid peroxidation and a lower level of activity of antioxidant enzymes.  相似文献   

2.
Desiccation studies in relation to the storage of Araucaria seed   总被引:1,自引:0,他引:1  
Relationships between seed moisture content (fresh weight basis) and germination were examined for nine Araucaria species by desiccation under mild environmental conditions. The lowest safe moisture content, below which germination percentage begins to decline, was estimated in each case. Seeds can be grouped into three moisture content categories: the first group (including A. araucana, A. angustifolia, A. hunsteinii and A. bidwillii) cannot be safely dried to below 25–40%; the second group (including A. columnaris, A. rulei, A. nemorosa and A. scopulorum) cannot be dried to below about 12% without damage; the third category contains A. cunninghamii, which can be dried to 2% without damage. Seeds in the first group should be stored at 0–5 °C with moisture contents above the lowest-safe value. Provided freezing damage does not exceed 10%, seeds in the second group should be kept at - 18°C or lower with about 7% moisture content for long-term storage and at 0–5 °C with about 12% moisture content in the short term. Seed of A. cunninghamii is best retained at near 5% moisture content and in -18°C or lower. The lowest-safe moisture content was found to be associated with seed size and weight, higher moisture content values coinciding with greater size and weight of seed. Food reserve materials also differed among the groups; seeds of the first group were mainly starchy, whilst those in the other categories possessed a high lipid content.  相似文献   

3.
The aim of the present work was to investigate whether loss of germination ability and viability of sunflower (Helianthus annuus L.) seeds during incubation at a high temperature (45°C) was related to changes in energy metabolism, loss of membrane integrity, and/or changes in lipid composition. Pre‐treatment of seeds at 45°C progressively reduced subsequent germination at the optimal temperature (25°C). Seeds did not germinate at 45°C and almost all of them were dead after 72 h of soaking at this high temperature. This loss of seed viability was associated with a large increase in leakage of K+ and total electrolytes into the incubation medium, and with production of malondialdehyde in the embryonic axis and cotyledons, suggesting a loss of membrane integrity probably due to lipid peroxidation. ATP and ADP levels increased sharply during the first hours of imbibition at 45°C, remained high for about 24 h and then decreased. As a consequence, the energy charge followed a similar pattern. If the treatment at 45°C did not exceed 48 h, seeds recovered an apparently normal energy metabolism after transfer to 25°C, even though they lost their ability to germinate at this temperature. Therefore, energy metabolism at the whole embryo level cannot be considered as an indicator of germination ability. Incubation of seeds at 45°C resulted in an increase in triacylglycerols and diacylglycerols without a significant change in their fatty acid composition. It also induced a slight increase in phospholipid content with an increase in C16:0, C18:0 and C18:1, but with no change in C18:2. In phospholipids, the C18:2/C18:1 and (C18:1 + C18:2)/ (C16:0 + C18:0) ratios thus declined during treatment at 45°C. The results obtained suggest that deterioration of sunflower seeds during incubation at a high temperature is mainly related to membrane damage and alteration of energy metabolism, and that accumulation of malondialdehyde, which is an index of lipid peroxidation, does not correspond to a decrease in total lipids and phospholipids nor to a significant change in fatty acid composition, except in PL in which the C18:2/C18:1 and (C18:1 + C18:2)/ (C16:0 + C18:0) ratios slightly declined.  相似文献   

4.
The aim of this study was to determine if the loss of germinability and viability of beech (Fagus sylvatica L.) seeds stored at different variants of temperature (4, 20, and 30 °C) and relative humidity (RH: 45 and 75 %) is associated with a loss of membrane integrity and changes in lipid composition. Beech seeds stored for 9 weeks gradually lost viability at a rate dependent on temperature and humidity. The harmful effect of temperature increased with growing humidity. The loss of seed viability was strongly correlated with an increase in membrane permeability and with production of lipid hydroxyperoxides (LHPO), which was regarded as an indicator of peroxidation of unsaturated fatty acids. The condition of membranes was assessed on the basis of their permeability and the state of lipid components: phospholipids and fatty acids. During seed storage we observed a decline in concentration of individual phospholipids and fatty acids, proportional to the loss of seeds viability. We also detected a decrease in concentrations of α-tocopherol and sterols, which play an important role in protection of membranes against the harmful influence of the environment. Our results show that the germinability of beech seeds declines rapidly at temperature above 0 °C and growing humidity. This is due mainly to the loss of membrane integrity, caused by peroxidation of unsaturated fatty acids.  相似文献   

5.
Three-day-old seedlings (t 0 stage) of Vigna radiata (L.) Wilczek obtained from seeds hydroprimed (H) and hydroprimed with proline (HPro) were examined. H and HPro slightly improved mung bean seed germination and seedlings growth at 5°C. The best growth was observed in the seedlings obtain from HPro5 (5 mM) seeds in comparison with the seedlings obtained from the control-non-primed seeds and H seeds. Exposure of mung bean seedlings grown from non-primed seeds to chilling for 4 days induced chilling injury: membrane lipid peroxidation, decrease in endogenous proline level and inhibition of growth of roots and hypocotyls. The seedlings obtain from HPro seeds grew better during the time of chilling and after rewarming at 25°C. The possible role of HPro in chilling injury limitation is discussed.  相似文献   

6.
Seeds with efficient antioxidant defence system show higher germination under stress conditions; however, such information is limited for the halophyte seeds. We therefore studied lipid peroxidation and antioxidant responses of a leaf-succulent halophyte Salsola drummondii during seed germination under different salinity levels (0, 200 and 800 mM NaCl), temperature (10/20, 20/30 and 25/35°C) and light regimes. Seeds absorbed water and germinated in less than 1 h in non-saline control while increases in salinity decreased the rate of water uptake as well as seed germination. Non-optimal temperatures (10/20 and 25/35°C) and complete dark condition reduced seed germination in comparison to those seeds germinated under optimal temperature (20/30°C) and 12-h photoperiod, respectively. Generally, higher lipid peroxidation and antioxidant enzyme activities were observed in seeds at non-optimal temperature and in those seeds germinated in dark. Decrease in reduced ascorbic acid content was found in highest salinity and temperature treatments, while reduced glutathione content did not change significantly with changes in salinity, temperature and light regimes. These results indicate variation in temperature and light but not salinity enhances antioxidant enzyme activities in germinating seeds of Salsola drummondii.  相似文献   

7.
Bienertia cycloptera (Chenopodiaceae) produces two types of leaf foliage colour (reddish and yellowish). In order to determine the role of leaf colour variation in regulating the germination characteristics and salinity tolerance during germination, a study was conducted on seeds collected from plants of both colours. Seeds with and without pulp were germinated under two illumination conditions (12‐h light photoperiod and continuous dark), three alternating temperature regimes (15/25°C, 20/30°C and 25/35°C), and several salinity levels at 20/30°C. Germination percentage was significantly higher for seeds without pulp as compared to the seeds with pulp. The response of B. cycloptera seeds to salinity depended on the leaf colour. Thus, the seeds collected from reddish coloured plants were able to tolerate higher salinity compared to those of yellowish coloured plant. The germination recovery results indicate that the seeds from both coloured plants could remain viable in saline condition and they will be able to germinate once the salinity level are decreased by rain. The production of different foliage colours by B. cycloptera seems to be an adaptative strategy which increases the possibility for establishment in unpredictable environments by producing seeds with different germination requirements and salinity tolerance.  相似文献   

8.
In the temperate region temperature is the main factor influencing the germination period of plant species. The purpose of this study was to examine effects of constant and fluctuating temperatures on dormancy and germination under laboratory and field conditions in the three wetland species Lycopus europaeus, Mentha aquatica and Stachys palustris. The results should give indications if the temperature-dependent regulation of dormancy and germination is phylogenetically constrained. Tests for germination requirements showed a minimum temperature for germination of 9 °C in Mentha and 12 °C in Lycopus and Stachys, and a maximum temperature of 33 °C for Lycopus and 36 °C for Mentha and Stachys. Fluctuating temperatures promoted germination in all three species but the amplitude required for high germination (>50%) differed: it was 8 °C in Mentha, 10 °C in Stachys and 14 °C in Lycopus (mean temperature 22 °C). The effect of temperatures on the level of dormancy was examined in the laboratory by imbibing seeds at temperatures between 3 °C and 18 °C for periods between 2 and 28 weeks, as well as by a 30-month burial period, followed by germination tests at various temperatures, in light and darkness. In the laboratory only low temperatures (≤12 °C) relieved primary dormancy in seeds of Lycopus, while in Mentha and Stachys also higher temperatures lead to an increase of germination. Dormancy was only induced in Lycopus seeds after prolonged imbibition at 12 °C in the laboratory. Buried seeds of all species exhibited annual dormancy cycles with lower germination in summer and higher germination from autumn to spring. Exhumed seeds, however, showed considerable differences in periods of germination success. Dormancy was relieved when ambient temperatures were below 12 °C. Ambient temperatures that caused an induction of dormancy varied depending on species and test condition, but even low temperatures (8 °C) were effective. At high test temperatures (25 °C) in light, exhumed seeds of all three species showed high germination throughout the year. The three species showed various differences in the effects of temperatures on dormancy and germination. Similarities in dormancy and germination found among the species are in common with other spring-germinating species occurring in wetlands, so it seems that the temperature dependent regulation of dormancy and germination are related to habitat and not to phylogenetic relatedness.  相似文献   

9.
Seeds of beech (Fagus sylvatica L.) that have been subjected to dormancy breaking consisting of 10 weeks of prechilling at 3 °C and 34 % water content (WC) and then desiccation to 10 % WC, are non-dormant (ND). ND seeds are characterised by greater sensitivity to storage conditions, than no prechilled, dormant (D) seeds. The aim of the present work was to investigate factors affecting the loss of seed viability during storage of D and ND beech seeds at different temperatures (4 and 20 °C) and humidity levels (45 and 75 % RH) for 3 weeks. In general, both D and ND seeds maintained a high germination capacity after storage at 4 °C. At 20 °C and 45 and 75 % RH the germination capacity of D seeds diminished to 80 and 28 %, respectively. Under the same conditions, ND seeds lost germination capacity to a greater degree, with only 62 and 7 % germinated seeds, respectively. At 20 °C, an increase in production of reactive oxygen species was observed, and the increase was significantly higher in ND seeds. The loss of germination capacity was coincident with an increase in electrolyte leakage and accumulation of free fatty acids, which suggests that membrane deterioration was the cause of the decline in germinability. ND seeds stored at 20 °C and 45 and 75 % RH showed a greater decrease than D seeds in contents of the primary phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as well as in polyunsaturated fatty acids (18:2 and 18:3). ND seeds possessed more unsaturated fatty acids, especially 18:3, than D seeds in the phospholipid fraction before storage. D seeds were characterised by a significantly higher level of α-tocopherol and UV-absorbing phenols. The level of ascorbate was similar in D and ND seeds. D seeds contained glutathione in both reduced (GSH) and oxidised (GSSG) forms, and GSSG dominated GSH. ND seeds contained more GSSG form than D seeds. We concluded that the membranes of ND seeds are exposed to greater oxidative stress during storage due to higher levels of unsaturation and lower levels of α-tocopherol, the main antioxidant that protects membranes against free radical attack.  相似文献   

10.
Seeds of sorghum (Sorghum vulgare Pers.) dried in a forced-air dryer from an initial moisture content of 12 percent to either 10 percent or 7 percent exhibited physiological dormancy. Dormancy was more marked in seeds dried to 7 percent than to 10 percent moisture, and was more pronounced in germination at 15° or 20° than at 25°C. Expression of dormancy at the lower temperatures was influenced decidedly by the four germination media (paper towels, blotters, sand, and soil). Percent dormancy was lowest in towels and highest in soil. Osmotic tension is suggested to be a factor influencing dormancy in these media. Dormancy was relieved by cutting the integumentary membrane or by rehydration of dried seeds. Respiration rates were lower and respiratory quotients higher in dormant seeds than in the controls. Differences in respiration rates were detected within 2 hours after the start of imbibition. Dormancy and differences in respiration rates appear to be associated with changes induced in the seeds by drying.  相似文献   

11.
Scorpiurus subvillosus L., wide spread in pastures of Mediterranean basin, is disappearing in the native pastures of the Hyblean plateau (Sicily, southern Italy), because of overgrazing and intensive management techniques. Moreover, it exhibits seed coat dormancy, which delays and reduces germination preventing its diffusion. This paper represents a first attempt in order to investigate changing in germination determined by storage time and temperature on seeds of two populations of S. subvillosus. Germination of S.␣subvillosus seeds was tested in relation to four storage time (30, 130, 200 and 360 days after harvest (DAH)), eight constant temperatures (5, 10, 15, 20, 25, 30, 35 and 40°C) and two populations of different provenience (30 and 600 m above mean sea level). The experiments were conducted either on scarified and unscarified seeds. In S. subvillosus the failure of germination under favourable conditions must be attributed␣only to seed coat, since seed scarification enhanced germination percentage with values up to 100% at almost all tested temperatures. In both treatments, but with a grater incidence in unscarified, seed germination increased gradually as temperature raised, peaking at 20–25°C, then declined with further increases of temperatures. At 40°C no germination occurred. Storage time induced a softening effect, which is somewhat limited by the natural ageing of seeds occurring from about 6 months after harvest.  相似文献   

12.
13.
We studied the effects of weak permanent homogenous hirizontal magnetic field (PMF) (400 A/m) on the composition and content of lipids and composition of their fatty acids (FAs) in radish (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) seedlings at temperatures of 20 and 10°C. We compared lipid composition and content in seedlings at the phase of developed cotyledons (20°C, 5-day-old, and 10°C, 8-day-old seedlings) under low light and in darkness with the lipid composition and content in dry seeds. The seedlings grown in geomagnetic field (GMF) served as a control. In dry seeds, about 99% of total lipids comprised neutral lipids (NL) and only 1% were polar lipids (PL). Triacylglycerols predominated among NL comprising 93% of total seed lipids. During seed germination, NLs were consumed and PL were produced: the amount of glycolipids increased in control by 3.5–5 times and the amount of phospholipis, by 1.5–2 times.In the light at 20°C, PMF suppressed the formation of PL (by 18%), whereas in darkness, it stimulated it approximately by 80% as compared with control. In the light at 10°C, PMF slightly stimulated PL formation; in darkness, it did not almost affect their synthesis. In all treatments, PMF increased the ratio of phospholipids to sterols by 30–100%. Among FA, PMF exerted the strongest effect on the content of erucic acid: it increased in the light and in darkness at 20°C approximately by 25% and decreased at 10°C in the light by 13%. PMF behaved as a correction factor affecting lipid metabolism on the background of light and temperature action.  相似文献   

14.
The main objective of this study was to evaluate the stability of astaxanthin after drying and storage at different conditions during a 9-week period. Recovery of astaxanthin was evaluated by extracting pigments from the dried powders and analysing extracts by HPLC. The powders obtained were stored under different conditions of temperature and oxygen level and the effects on the degradation of astaxanthin were examined. Under the experimental conditions conducted in this study, the drying temperature that yielded the highest content of astaxanthin was 220°C, as the inlet, and 120°C, as the outlet temperature of the drying chamber. The best results were obtained for biomass dried at 180/110°C and stored at −21°C under nitrogen, with astaxanthin degradation lower than 10% after 9 weeks of storage. A reasonable preservation of astaxanthin can be achieved by conditions 180/80°C, −21°C nitrogen, 180/110°C, 21°C nitrogen, and 220/80°C, 21°C vacuum: the ratio of astaxanthin degradation is equal or inferior to 40%. In order to prevent astaxanthin degradation of Haematococcus pluvialis biomass, it is recommended the storage of the spray dried carotenized cells (180/110oC) under nitrogen and −21°C.  相似文献   

15.
The fatly acid composition of different lipid fractions (neutral, glyco- and phospholipids) was studied in Sphagnum fimbriatum Wils, gametophytes grown in aseptic cultures at two temperatures (15°C and 25°C). The effect of a growth-retarding concentration (0.1 mM) of KF was also investigated. Fifteen-day treatment with KF affected the fatty acid composition more strongly at the higher than at the lower temperature. The proportion of palmitic acid (16:0) increased but the proportion of linoleic (18:2) decreased in all the lipid fractions, and that of linolenic (18:3) acid decreased in the fractions containing glyco- and neutral lipids. This indicates that the fluoride ions inhibit lengthening of the fatty acid chain. Compared with gametophytes grown at 25°C, material cultivated at 15°C had a much higher proportion of a highly unsaturated fatty acid, linolenic acid (18:3), in all the lipid fractions, but a lower proportion of oleic acid (18:1) in the neutral and phospholipids, and a lower proportion of linoleic (18:2) acid in all three fractions.  相似文献   

16.
We analysed changes in AMP, ADP, and ATP concentrations and adenylate energy charge in Norway maple (Acer platanoides L.) and European beech (Fagus sylvatica L.) seeds during dormancy breaking (at 3 °C) and in the control variant at 15 °C. Values of the studied indicators in stratified beech seeds were generally higher at 15 °C, at least until germination (+3 °C). By contrast, in maple seeds, the values recorded during dormancy breaking by cold stratification were much higher than at 15 °C. Three peaks (usually in weeks 3, 6, and 8) were observed in maple seeds at 3 °C, but not at 15 °C. Among adenine nucleotides, AMP reached the highest levels in both species in both variants of the experiment.  相似文献   

17.
Invasive alien plants impact ecosystems, which often necessitates their removal. Where indigenous species recovery fails following removal alone, an active intervention involving reintroduction of seed of native species may be needed. This study investigated the potential for a combination of the fire cues of smoke and heat as a pre‐treatment of seeds in breaking dormancy and facilitating increased germination. Species were selected to represent different functional types within Cape Flats Sand Fynbos; a fire‐prone, critically endangered vegetation type in South Africa. Seeds were exposed to either a heat pulse (temperatures between 60 and 300°C for durations of between 30 s and 20 min) or dry after‐ripening (1 or 2 months at milder temperatures of 45°C or less). Thereafter, seeds were soaked in smoke solution for 18 h and subsequently placed on agar at 10/20°C for germination. Most species fell into one of two main groups: Seed germination in the first group was greatest following a lower temperature (60°C) heat pulse, an extended period of mild temperature (20/40°C or 45°C) exposure, or no pre‐treatment with heat. Seed germination in the second group was promoted after brief exposure to higher (100°C) temperatures. No germination occurred in any species following heat treatments of 150°C or higher. Species which responded better to higher temperatures were mainly those possessing physical dormancy, but seed morphology did not correlate with germination success. This study showed that heat stimulation of seeds is more widespread in fynbos plant families than previously known and will enable the development of better seed pre‐treatment protocols before large‐scale sowing as an active restoration treatment after alien plant clearing.  相似文献   

18.
The biosynthesis of nutritionally important polyunsaturated fatty acids (PUFAs) in phytoplankton is influenced by environmental temperature. We investigated the potential of climate warming to alter lipid dynamics of Scenedesmus obliquus (Turpin) Kütz. by comparing lipid and fatty acid (FA) profiles as well as FA metabolism (using [1‐14C] acetate) at 20°C and 28°C. We documented an overall decline (53%–37%) in the proportion of n‐3 PUFA (in particular, of α‐linolenic acid [ALA; 18:3n‐3]), and a concomitant increase in saturated fatty acids (SAFAs) in total lipids (TLs) at 28°C, consistent with enhanced incorporation of radioactivity from [1‐14C] acetate into total 16:0, 18:1, and decreased incorporation into 18:2 and 18:3 FA (from 36% to 22% of the total) at 28°C. Glycerophospholipids were also affected by warming; ALA and stearidonic acids (SDAs; 18:4n‐3) both decreased (by 13% and 15%, respectively) in phosphatidylcholine (PC) and (by 24% and 20%, respectively) in phosphatidylethanolamine (PE). The characteristic FA in phosphatidylglycerol (PG; 16:1n‐13t) increased (by 22%) at 28°C. The activities of desaturases, which add double bonds to FA moieties, comprised the major suite of reactions affected by the temperature increase in TL and polar lipid (PL) classes. Climate modelers predict an increase in the number of extreme heat days in summer at temperate latitudes, with parallel projected increases in water temperatures of shallow water bodies. Our results suggest that the overall decrease in the essential n‐3 FA ALA in S. obliquus at higher water temperatures may lower food quality for higher tropic levels, adding another climate‐warming stress.  相似文献   

19.
The lipid and biochemical composition of the haptophyte Isochrysis galbana TK1 was examined. Cultures were grown at 15 °C and 30 °C, and harvested in the exponential and early stationary growth phases. Carbohydrate and protein content varied at the two culture temperatures and growth phases. The highest protein content was found at the exponential growth phase at 15 °C, and the highest carbohydrate content was found at the stationary phase at the same culture temperature. Lipid accumulated in the stationary growth phase and its content was higher at 30 °C than at 15 °C regardless of the growth phase. The neutral lipids were the major class of lipid found in all the cultures. The stationary phase culture had a higher proportion of neutral lipids than the exponential phase culture and the proportion decreased slightly when culture temperature was increased from 15 °C to 30 °C. Phospholipid levels remained constant at the two temperatures, but slightly decreased in the stationary phase. Glycolipids in the exponentially growing cells were higher than those from stationary growth phase and increased with temperature. Polyunsaturated fatty acids (PUFAs) predominated in glycolipids and phospholipids. Cells grown at 15 °C contained higher proportion of 18:3 (n–3) and 22:6 (n–3) with a corresponding decrease in 18:2 (n–6), monounsaturated and saturated fatty acids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The relationship of seed moisture content (fresh weight basis) to germination, and the effect on viability of various storage conditions were examined for five species of the tropical forest tree genus Dipterocarpus. It was shown that seeds fall into two groups with regard to desiccation tolerance. Firstly, D. obtusifolius and D. turbinatus cannot be dried below about 45% moisture content without damage; a sigmoid curve was found to fit the relationship between germination and moisture content for the latter species. Secondly, D. intricatus, D. tuberculatus and D. alatus can be safely dried to 10%, 12% and 17% moisture contents respectively, but desiccation to near 7% moisture content reduced viability by at least a half. Storage studies showed that seed of D. intricatus and D. tuberculatus possessed increased longevity as moisture contents were reduced within the range 6–20%. It was concluded that seeds in the first group are ‘recalcitrant’ and that those in the second group are ‘orthodox’ in their storage physiology, according to the categories described by Roberts (1973). Wide differences between species in seed desiccation rates were observed. In 15% relative humidity D. intricatus dried to 7% moisture content within a week, whilst D. obtusifolius retained 30% moisture content even after 5 wk; other species had intermediate desiccation rates. Seed size and structure may partly account for the differences observed. Correlations were observed between seed storage physiology and other factors which were investigated. ‘Orthodox’ seeds had quicker desiccation rates, were derived from drier habitats, and had smaller embryos than those of ‘recalcitrant’ seeds. ‘Orthodox’ seeds, with the possible exception of D. alatus, should be kept at 0–3°C with about 12% moisture content in the short term and, provided less than 10% germination is lost on freezing, at-18°C with about 8% moisture content in the long term. ‘Recalcitrant’ seeds should be stored in ventilated containers at 21°C and with moisture contents above 45–50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号