首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以3H-秋水仙碱为探针,测定小鼠脑微管蛋白含量.结果表明雌性激素具有显著的促进成年鼠脑微管蛋白合成的作用.与雌性激素相比,雄性激素促进脑微管蛋白合成的作用较弱.特别值得指出的是雌性激素促进脑微管蛋白合成的作用发生在脑发育的临界期之外,而此时甲状腺激素早已丧失了促进脑微管蛋白合成的作用.因此雌性激素在维护成年脑结构和功能的完整完善方面起着重要作用,而且这种作用可能会获得新的应用.  相似文献   

2.
雌性激素在某些方面改变着神经功能,在雌性激素敏感的神经元中,雌二醇调节各种PNA的表达,包括rRNA、神经多肽和神经传导物受体。这咎影响可能伴有在基因产物合成方面的相应改变或翻译后修饰。最近的研究已经揭示雌性激素能改变轴突生长以及突触器度。在我们以前的实验中注意到性别对脑微管蛋白合成的影响,也发现雌性激素可刺激雄鼠脑微管蛋白合成。雌性激素可能是成年动物神经突生长的一种调节物。这种假设已经得到深入研究和证实;发现性激素对大脑皮质、海马、中脑和间脑神经元的形态和数量有着重要的影响,并改变神经突生长和突触的连接。实验分为去势(GM)和未去势(IM)两组。第一组(GM)为1月龄鼠,去势后10天分为睾丸酮(GMT)、雌二醇(GME)、雌二醇加孕酮(GMEP)三个治疗实验组和一个对照组(GMC)。第二组(IM)为老年雄鼠,分为睾丸酮(IMT)、雌二醇(IME)、雌二醇加孕酮(IMEP)三个治疗组二组(IM)为老年雄鼠,分为睾丸酮(IMT)、雌二醇(IME)、雌二醇和孕酮(IMEP0三个治疗组和对照组(IMC)。对照组注射芝麻油。处理结束,迅速断头,制备脑匀浆液。取上清液进行^H秋水仙碱标记反应,液闪计数,离微管蛋白的生成量。实验结果如表一:微管蛋白每分钟的放射量在GM组中,GME比GMC增加37%-43%,GMT与GMC增加18%-23%;IM组中,IME比IMC增加34%,IMT比IMC增加13%-15%。睾丸酮和雌二醇均能刺激6月龄鼠脑微管蛋白的合成,但两者作用有明显差异,雌二醇作用强于睾丸酮。而且对雌雄鼠具有相同作用,对成年和老年鼠均能促进脑微管蛋白合成。微管蛋白是神经轴突和树突生长必需的成分。对于脑组织和脑功能的至关重要。雌性激素能促进雌雄鼠脑发育临界期以后脑微管蛋白的合成。因而,在临床上可以用于治疗脑发育缺隐和延缓衰老。甲状腺激素也具有促进微管蛋白合成的作用。甲状腺激素缺乏会引起神经细胞分化和神经突生长的停滞。但是,它的作用仅限于胎儿至新生儿早期。雌性激素可以于脑发育时限之外替代甲状腺。衰老首先开始于神经系统,然而波及其它器官或组织。脑衰老的原因是由于一些神经元死亡,突触未端减少,轴突、树突萎缩。外源雌性激素可以促进脑微管蛋白的合成,因而可以延缓衰老。对于微管蛋白的合成,与雌二醇相比,睾丸酮有较弱的促进作用。这被解释为:睾丸酮是通过它的芳香化作用转变成雌二醇而发挥作用的。因而,睾丸酮能否起作用槿起作用的大小,取决于其芳香化程度的大小。如果受到如雌二醇拮抗剂的抑制,睾丸酮的作用甚至会消失。  相似文献   

3.
雌性激素在某些方面改变着神经功能。在雌性激素敏感的神经元中,雌二醇调节各种RNA的表达,包括rRNA、神经多肽和神经传导物受体。这种影响可能伴有在基因产物合成方面的相应改变或翻译后修饰。最近的研究已经揭示雌性激素能改变轴突生长以及突触密度。在我们以前的实验中注意到性别对脑微管蛋白合成的影响,也发现雌性激素可刺激雄鼠脑微管蛋白合成。雌性激素可能是成年动物神经突生长的一种调节物。这种假设已经得到深入研究和证实;发现性激素对大脑皮质、海马、中脑和间脑神经元的形态和数量有着重要的影响,并改变神经突生长和突触的连接。实验分为去势(GM)和未去势(IM)两组。第一组(GM)为1月龄雄鼠,去势后10天分为睾丸酮(GMT)、雌二醇(GME)、雌二醇加孕酮(GMEP)三个治疗实验组和一个对照组(GMC)。第二组(IM)为老年雄鼠,分为睾丸酮(IMT)、雌二醇(IME)、雌二醇加孕酮(IMEP)三个治疗组和对照组(IMC)。对照组注射芝麻油。处理结束,迅速断头,制备脑匀浆液。取上清液进行3H秋水仙碱标记反应,液闪计数,测定脑微管蛋白的生成量。实验结果如表一:微管蛋白每分钟的放射量在GM组中,GME比GMC增加37%~43%,G  相似文献   

4.
利用 3H-秋水仙碱与微管蛋白间的特异结合及DEAE纤维素对微管蛋白的离子交换作用,连续测定小鼠、鸡胚脑发育过程中的脑微管蛋白的合成变化。结果表明脑微管蛋白的合成速度均在其脑发育的临界期时达到最高峰。此时恰是甲状腺功能逐渐完善的时期。当小鼠进入育龄期时,雌雄鼠脑微管蛋白含量差异显著。可能说明性激素对微管蛋白的合成有重要影响。  相似文献   

5.
细胞增殖必伴有染色体的一分为二及细胞质的增生,β微管蛋白则参与细胞的增殖过程.正性和负性调节因子对β微管蛋白的表达及细胞增殖间的相关性研究显示,不同生理剂量的正性调节因子IGFⅡ、T3/T4处理UMR106细胞12h,Northernblot实验发现它们在促进细胞DNA合成的同时,可使β微管蛋白mRNA表达增加,呈剂量依赖关系.而负性调节因子TNFα则相反地在抑制细胞DNA合成的同时,使β微管蛋白mRNA表达降低,也呈剂量依赖关系.Westernblot实验进一步表明,IGFⅡ可使β微管蛋白表达增加,而TNFα使β微管蛋白表达降低.由此可见,β微管蛋白的合成与细胞增殖间存在着一定的相互联系.  相似文献   

6.
应用3H-TdR参入,流式细胞技术和Northernblot等方法,观察了EGF和IGF-Ⅰ对UMR106细胞增殖及β微管蛋白表达的影响。结果显示,两种生长因子分别处理UMR106细胞12h,在促进细胞DNA合成的同时,β微管蛋白mRNA的表达量明显提高。运用间接免疫荧光技术及Westernblotting方法,研究发现两种生长因子可使微管聚合及微管蛋白的表达有所增加。提示β微管蛋白的合成及聚合与细胞增殖间可能存在着一定的相互联系.  相似文献   

7.
微管由微管蛋白组成,在细胞分裂、细胞内物质运输、信号传递、维持细胞形态等过程中起着重要作用.一些干扰微管功能的化合物可使细胞停滞在有丝分裂期而抑制细胞增殖.相对于正常细胞,肿瘤细胞有丝分裂异常频繁,以微管作为抗肿瘤的靶点已成为研究热点.作用于微管的微管蛋白抑制剂通过抑制微管蛋白的聚合促进微管解聚或者抑制微管解聚促进微管蛋白聚合来破坏微管动态平衡、干扰肿瘤细胞纺锤体形成、阻断细胞分裂、抑制肿瘤增殖,现就微管蛋白抑制剂的研究进展作一综述.  相似文献   

8.
鼠脑驱动蛋白是一类利用ATP水解释放的能量在微管系统上高连续性运动的常规驱动蛋白。了解ATP水解的化学能如何转化为机械动能是驱动蛋白研究中的重大课题。为此,鼠脑驱动蛋白单体(rK354)的晶体通过浸泡的方式引入ATP的结构类似物AMPPNP。rK354-AMPPNP复合物和rK354-ADP复合物结构的比较,揭示了开关区域Ⅱ的Glu237起连接ATP的γ-磷酸和驱动蛋白微管结合区的枢纽作用。  相似文献   

9.
采用反复解聚-聚合的方法从对虾腹神经索中分离纯化了微管蛋白。用阴离子去垢剂 SDS处理,将对虾神经纤维中的微管蛋白解聚为分子量相似的二条链。它们的分子量都在55,000左右。这与许多其他作者从各种不同组织中提取的微管蛋白的相同。以纯化的小鸡脑微管蛋白作抗原,制备了兔抗小鸡脑微管蛋白的抗体作第一抗体,以 FITC 羊抗兔抗体作第二抗体,研究了微管蛋白在对虾腹神经索中的神经纤维内的分布。令人意外的是除了对虾神经纤维特有的微管鞘与轴浆外,对虾神经纤维的髓鞘部位也呈现明显的荧光反应。这一结果提示,对虾神经纤维髓鞘中也应含有相当量的微管蛋白,但用同样方法在其它种动物(如大鼠)的有髓纤维的髓鞘中却未见阳性反应。  相似文献   

10.
采用He-Ne激光生物辐照仪(632.8 nm,5 mW·mm-2)、UV-B(15.55 KJ·m-2·d-1)及二者复合处理拟南芥幼苗后提取微管蛋白,考马斯亮蓝法测含量和SDS-PAGE凝胶电泳进行初步分析,并用免疫印迹鉴定微管蛋白.结果表明:单独UV-B使微管蛋白解聚,He-Ne激光和UV-B复合处理后,微管蛋白解聚程度减小,单独He-Ne激光处理促进微管聚合.因此认为He-Ne激光在一定程度上缓解了UV-B对微管蛋白的解聚作用.  相似文献   

11.
紫杉醇为新型抗微管药物,对许多肿瘤都有明显疗效,尤其是晚期卵巢癌和乳腺癌[1]。它的作用目标是细胞骨架的微管系统,其结合位点在β-微管蛋白N-端第31位氨基酸和第217~231位氨基酸位点上,结合后促进微管蛋白聚合并稳定微管结构,抑制其解聚,进而影响...  相似文献   

12.
微管是真核细胞构成细胞骨架的主要成分,由α/β微管蛋白组装而成。微管在细胞多种活动中发挥着重要的作用,其功能主要受微管结合蛋白、微管蛋白的翻译后修饰以及微管蛋白亚型的调控。已有研究发现,α/β微管蛋白存在多种亚型,微管蛋白亚型在不同组织以及发育过程中的表达模式差异较大。多种微管蛋白亚型基因的突变可以引起神经系统疾病。该文综述了微管蛋白亚型的研究进展,尤其在微管功能调控、神经系统发育及其相关疾病中的作用。  相似文献   

13.
我们以Sindbis病毒感染BHK-21细胞为模式,研究了病毒的感染与细胞骨架的关系。结果显示:在病毒感染早期,细胞的蛋白质合成迅速被抑制,细胞的多聚核糖体(polysome)和mRNA从骨架上脱落,而病毒的RNA结合到骨架上。我们的结果还进一步表明,病毒的RNA是通过其3′-尾端与骨架结合的。另一方面在对Sindbis病毒非结构蛋白在体内与体外合成与加工的比较中,我们发现病毒蛋白在体外翻译加工的速度远低于体内,并且出现很多未成熟蛋白(premature protein),这种区别可能在某种程度上反应细胞骨架在蛋白质合成与加工中的作用。此外,在用秋水仙素和细胞松驰素B破坏微管和微丝后,病毒非结构蛋白的合成与加工没有明显变化,而结构蛋白的合成则受到明显的抑制。这表明病毒的两类蛋白的合成所依赖的细胞骨架成分可能有所不同,在结构蛋白合成过程中,微丝和微管起了重要作用,在非结构蛋白合成过程中,中间丝很可能起了重要作用。  相似文献   

14.
答在细胞有丝分裂的中期会发生染色体向两极移动的现象,而染色体的运动又有赖于微管的参与作用。微管的组成成分是微管蛋白。在活的细胞中,微管蛋白既可以聚合成微管,有时微管又可以解聚成微管蛋白。另外,微管蛋白能与秋水仙碱等植物碱特异结合,而且一旦结合即能阻止微管蛋白聚合成微管。正在分  相似文献   

15.
小鼠孤雌胚早期发育过程中γ-微管蛋白的动态变化   总被引:1,自引:0,他引:1  
微管蛋白是构成微管的主要蛋白,其中α、β亚单位形成异二聚体,而γ-微管蛋白在微管组装中起作用。为了研究小鼠早期孤雌胚中廿微管蛋白的动态变化,本实验采用了免疫荧光化学染色与激光共聚焦显微镜观察相结合的方法,在SrCl2激活的卵母细胞减数分裂以及早期孤雌胚有丝分裂过程中对γ-微管蛋白进行了定位观察。结果显示,SrCl2和细胞松弛素B(cytochalasin B,CB)诱导的第二次减数分裂中期(metaphase Ⅱ ofmeiosis,MII)小鼠卵母细胞恢复减数分裂,并且纺锤体始终与质膜平行,表明纺锤体旋转被抑制,但核分裂不受影响。减数分裂过程中γ-微管蛋白主要定位于中期纺锤体两极和后期分开的染色单体之间;孤雌活化两雌原核形成以后,γ-微管蛋白聚集在两雌原核周围。在早期孤雌胚有丝分裂间期无定形的γ-微管蛋白均匀分布于核;前中期γ-微管蛋白向两极移动,遍布于整个纺锤体区。有丝分裂中期、后期和末期廿微管蛋白的分布变化与减数分裂相似。结果表明,SrCl2和CB激活的MII卯母细胞产生杂合二倍体;γ-微管蛋白具有促微管负极帽形成和稳定微管的功能,从而促进纺锤体的形成;分裂后期和末期廿微管蛋白的重新分布可能是由纺锤体牵引同源染色体分离所诱导的:γ-微管蛋白负责两雌原核的迁移靠近。  相似文献   

16.
Tau蛋白在阿尔茨海默病神经细胞退行性变性中的作用   总被引:6,自引:1,他引:5  
王建枝 《生命的化学》2004,24(5):426-428
Tau是神经细胞中含量最高的微管相关蛋白质,其主要生物学功能是促进微管组装和维持微管的稳定性。已发现tau蛋白异常与20余种神经退行性疾病有关。该结合作研究组近年来的工作,介绍tau蛋白在阿尔茨海默病神经细胞退行性变性中的可能作用及其机制,并对神经细胞退行性变性的本质提出了一些新见解。  相似文献   

17.
采用丙酮粉抽提,DEAE-SephadexA-50、SephacrylS-300、MonoQ柱层析,从银杏(GinkgobilobaL.)花粉中分高纯化出微管蛋白(tubulin),其两个亚基(α、β)的分子量分别为54kD和52kD.纯化的微管蛋白可与鸡脑微管蛋白抗体发生免疫交叉反应.  相似文献   

18.
一、前言细胞骨架中主要结构组分之一是微管系统。现已知与组成微管有关的蛋白质有两大类:微管蛋白和微管伴随蛋白(MAPs),前者中包括α-微管蛋白和β-微管蛋白,其二聚体称为6s微管蛋白,而后者则包括高分子微管伴随蛋白(HMW)和分子量较小的tau蛋白,近年来对这些蛋白质的性质、提纯和其抗体的制备等研究都有相当大的进展。方法学上利用免疫荧光和免疫酶标促进了对细胞的微管系统及细胞骨架整体的了解。我们曾对组成微管的蛋白做过一些工作。本文报道我们在以前工作的  相似文献   

19.
采用丙酮粉抽提,DEAE-Sephadex A-50、Sephacryl S-300、MonoQ柱层析,从银杏花粉中分离纯化出微管蛋白,其两个亚基的分子量分别为54kD和52kD纯化的微管蛋白可与鸡脑微管蛋白抗体发生免疫交叉反应。  相似文献   

20.
免疫组织化学方法检测脑红蛋白在大鼠中枢神经系统的分布   总被引:17,自引:0,他引:17  
目的 探讨脑红蛋白(NGB)基因在中枢神经系统中的分布。方法 用免疫组织化学ABC法研究了NGB蛋白在成年大鼠脑内的分布和定位。结果 NGB蛋白在成年大鼠脑中有非常广泛的表达。其分布区域包括大脑皮质,海马,丘脑和下丘脑的部分核团,脑桥及小脑,NGB免疫反应阳性物质定位于神经元的细胞质。结论 NGB蛋白在大鼠脑中有非常广泛的表达,提示NGB基因在中枢神经系统的功能活动中可能起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号