首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Restriction endonuclease MboI cleavage of DNA was inhibited by actinomycin D and distamycin A. The two inhibitors protected different subsets of the 8 cleavage sites in polyoma DNA. The cleavage reactions were analyzed both in the presence of minimal inhibitory concentrations of the compounds and at higher concentrations, allowing cleavage at only 1 site/DNA molecule. The experiments showed that cleavage sites most efficiently protected by actinomycin D had putative inhibitor binding sites at a distance of 1-2 base pairs from the MboI recognition sequence. Distamycin A, in contrast, apparently has to bind immediately adjacent to the MboI recognition sequence to protect from cleavage.  相似文献   

2.
3.
4.
We have determined the recognition sequence of the restriction endonuclease KpnI, previously isolated from Klebsiella pneumoniae. The enzyme cleaves the twofold rotationally symmetric sequence (see book for formula) at the positions indicated by the arrows, producing 3' protruding cohesive ends, four nucleotides in length. The specific cleavage site was unambiguously deduced using both 3' and 5' end analyses of KpnI generated restriction fragments of simian-virus 40 (SV40) DNA (1 site), adenovirus-2 (Ad-2) DNA (8 sites), and a plasmid (pCRI) DNA (2 sites).  相似文献   

5.
H Van Heuverswyn  W Fiers 《Gene》1980,9(3-4):195-203
Restriction endonuclease BglI recognizes the DNA sequence (Formula: see text) and cleaves each strand at the site indicated, thus generating 3' protruding ends. The recognition sequence was deduced by correlating mapping data with nucleotide sequence information and the position of cleavage was unambiguously determined by 32P labeling of 5' termini produced by BglI digestion.  相似文献   

6.
A model for kinetics of circular substrate cleavage by restriction endonuclease was formulated. The aim of the analysis of the model was to extract kinetic constants for all target sites from time-dependence of fragment concentration in reaction products. That was proved to be possible for molecules with an odd number of fragments only. A symmetry of the molecules with an even number of fragment is the cause. A solution for molecules with an odd number of fragments was found and methods for dealing with the other molecules were suggested.Preliminary results were presented at VIIth CMEA Symposium Biophysics of Nucleic Acids and Proteins, Brno (Czechoslovakia) December 2–6, 1985.  相似文献   

7.
We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.  相似文献   

8.
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.  相似文献   

9.
Haemophilus influenzae Rf 232, showing the phenomena of restriction and modification, contains an endonuclease that inactivates in vitro the biological activity of DNAs lacking the strain-specific modification. This specific restriction endonuclease has been purified to near homogeneity by a procedure that includes DNA-agarose chromatography. This highly purified enzyme requires ATP and Mg2+ for activity and is stimulated by S-adenosylmethionine. The enzyme seems to cleave DNA at well-defined sites, since it produces a specific pattern of bands upon agarose gel electrophoresis. The enzyme has no ATPase activity. A methylase activity is observed in the course of the endonucleolytic reaction, which probably protects some of the DNA sites from cleavage.  相似文献   

10.
11.
The Bse634I restriction endonuclease is a tetramer and belongs to the type IIF subtype of restriction enzymes. It requires two recognition sites for its optimal activity and cleaves plasmid DNA with two sites much faster than a single-site DNA. We show that disruption of the tetramerisation interface of Bse634I by site-directed mutagenesis converts the tetrameric enzyme into a dimer. Dimeric W228A mutant cleaves plasmid DNA containing one or two sites with the same efficiency as the tetramer cleaves the two-site plasmid. Hence, the catalytic activity of the Bse634I tetramer on a single-site DNA is down-regulated due to the cross-talking interactions between the individual dimers. The autoinhibition within the Bse634I tetramer is relieved by bridging two DNA copies into the synaptic complex that promotes fast and concerted cleavage at both sites. Cleavage analysis of the oligonucleotide attached to the solid support revealed that Bse634I is able to form catalytically competent synaptic complexes by bridging two molecules of the cognate DNA, cognate DNA-miscognate DNA and cognate DNA-product DNA. Taken together, our data demonstrate that a single W228A mutation converts a tetrameric type IIF restriction enzyme Bse634I into the orthodox dimeric type IIP restriction endonuclease. However, the stability of the dimer towards chemical denaturants, thermal inactivation and proteolytic degradation are compromised.  相似文献   

12.
A restriction endonuclease obtained from Haemophilus gallinarum (hgaI) cleaves polyoma DNA at four specific sites. Using the EcoRI, HindIII, and HpaII endonuclease restriction sites as reference, the four HgaI cleavage sites were mapped at 0.02, 0.14, 0.27, and 0.48 fractional lengths, clockwise, from the single EcoRI cleavage site.  相似文献   

13.
Recognition sequence of a restriction enzyme   总被引:27,自引:0,他引:27  
  相似文献   

14.
Summary A new estimate of the sequence divergence of mitochondrial DNA in related species using restriction enzyme maps is constructed. The estimate is derived assuming a simple Posisson-like model for the evolutionary process and is chosen to maximize an expression which is a reasonable approximation to the true likelihood of the restriction map data. Using this estimate, four sets of mitochondrial DNA data are analyzed and discussed.  相似文献   

15.
The cleavage site for the restriction endonuclease EcoRV has been found to be 5′-GAT/ATC-3′, rather than 5′-GATAT/C-3′ as reported earlier by Kholmina et al. [Dokl. Akad. Nauk. 253 (1980) 495–497].  相似文献   

16.
BfiI is a novel type IIs restriction endonuclease that, unlike all other restriction enzymes characterised to date, cleaves DNA in the absence of Mg(2+). The amino acid sequence of the N-terminal part of BfiI has some similarities to Nuc of Salmonella typhimurium, an EDTA-resistant nuclease akin to phospholipase D. The dimeric form of Nuc contains a single active site composed of residues from both subunits. To examine the roles of the amino acid residues of BfiI that align with the catalytic residues in Nuc, a set of alanine replacement mutants was generated by site-directed mutagenesis. The mutationally altered forms of BfiI were all catalytically inactive but were still able to bind DNA specifically. The active site of BfiI is thus likely to be similar to that of Nuc. BfiI was also found by gel-filtration to be a dimer in solution. Both gel-shift and pull-down assays indicated that the dimeric form of BfiI binds two copies of its recognition sequence. In reactions on plasmids with either one or two copies of its recognition sequence, BfiI cleaved the DNA with two sites more rapidly than that with one site. Yet, when bound to two copies of its recognition sequence, the BfiI dimer cleaved only one phosphodiester bond at a time. The dimer thus seems to contain two DNA-binding domains but only one active site.  相似文献   

17.
Recognition sequences of restriction endonucleases and methylases--a review   总被引:31,自引:0,他引:31  
C Kessler  P S Neumaier  W Wolf 《Gene》1985,33(1):1-102
The properties and sources of all known endonucleases and methylases acting site-specifically on DNA are listed. The enzymes are crossindexed (Table I), classified according to homologies within their recognition sequences (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328 and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (Table III), the structure of the restriction fragment ends (Table IV), and the sensitivity to different kinds of DNA methylation (Table V). Table VI classifies the methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises those restriction endonucleases, which are known to be inhibited by the modified nucleotides. Furthermore, this review includes a restriction map of bacteriophage lambda DNA based on sequence data. Table VII lists the exact nucleotide positions of the cleavage sites, the length of the generated fragments ordered according to size, and the effects of the Escherichia coli dam- and dcmI-coded methylases M X Eco dam and M X Eco dcmI on the particular recognition sites.  相似文献   

18.
Flavones, found in nature as secondary plant metabolites, have shown efficacy as anti‐cancer agents. We have examined the binding of two flavones, 5,7‐dihydroxy‐3,6,8‐trimethoxy‐2‐phenyl‐4H‐chromen‐4‐one (5,7‐dihydroxy‐3,6,8‐trimethoxy flavone; FlavA) and 3,5‐dihydroxy‐6,7,8‐trimethoxy‐2‐phenyl‐4H‐chromen‐4‐one (3,5‐dihydroxy‐6,7,8‐trimethoxy flavone; FlavB), to phiX174 RF DNA using restriction enzyme activity assays employing the restriction enzymes Alw44, AvaII, BssHII, DraI, MluI, NarI, NciI, NruI, PstI, and XhoI. These enzymes possess differing target and flanking sequences allowing for observation of sequence specificity analysis. Using restriction enzymes that cleave once with a mixture of supercoiled and relaxed DNA substrates provides for observation of topological effects on binding. FlavA and FlavB show differing sequence specificities in their respective binding to phiX. For example, with relaxed DNA, FlavA shows inhibition of cleavage with DraI (reaction site 5′TTTAAA) but not BssHII (5′GCGCGC) while FlavB shows the opposite results. Evidence for tolological specificity is also observed, Molecular modeling and conformational analysis of the flavones suggests that the phenyl ring of FlavB is coplanar with the flavonoid ring while the phenyl ring of FlavA is at an angle relative to the flavonoid ring. This may account for aspects of the observed sequence and topological specificities in the effects on restriction enzyme activity. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 530–537, 2013.  相似文献   

19.
We have determined the crystal structure of the PvuII endonuclease in the presence of Mg(2+). According to the structural data, divalent metal ion binding in the PvuII subunits is highly asymmetric. The PvuII-Mg(2+) complex has two distinct metal ion binding sites, one in each monomer. One site is formed by the catalytic residues Asp58 and Glu68, and has extensive similarities to a catalytically important site found in all structurally examined restriction endonucleases. The other binding site is located in the other monomer, in the immediate vicinity of the hydroxyl group of Tyr94; it has no analogy to metal ion binding sites found so far in restriction endonucleases. To assign the number of metal ions involved and to better understand the role of Mg(2+) binding to Tyr94 for the function of PvuII, we have exchanged Tyr94 by Phe and characterized the metal ion dependence of DNA cleavage of wild-type PvuII and the Y94F variant. Wild-type PvuII cleaves both strands of the DNA in a concerted reaction. Mg(2+) binding, as measured by the Mg(2+) dependence of DNA cleavage, occurs with a Hill coefficient of 4, meaning that at least two metal ions are bound to each subunit in a cooperative fashion upon formation of the active complex. Quenched-flow experiments show that DNA cleavage occurs about tenfold faster if Mg(2+) is pre-incubated with enzyme or DNA than if preformed enzyme-DNA complexes are mixed with Mg(2+). These results show that Mg(2+) cannot easily enter the active center of the preformed enzyme-DNA complex, but that for fast cleavage the metal ions must already be bound to the apoenzyme and carried with the enzyme into the enzyme-DNA complex. The Y94F variant, in contrast to wild-type PvuII, does not cleave DNA in a concerted manner and metal ion binding occurs with a Hill coefficient of 1. These results indicate that removal of the Mg(2+) binding site at Tyr94 completely disrupts the cooperativity in DNA cleavage. Moreover, in quenched-flow experiments Y94F cleaves DNA about ten times more slowly than wild-type PvuII, regardless of the order of mixing. From these results we conclude that wild-type PvuII cleaves DNA in a fast and concerted reaction, because the Mg(2+) required for catalysis are already bound at the enzyme, one of them at Tyr94. We suggest that this Mg(2+) is shifted to the active center during binding of a specific DNA substrate. These results, for the first time, shed light on the pathway by which metal ions as essential cofactors enter the catalytic center of restriction endonucleases.  相似文献   

20.
SstI: a restriction endonuclease from Streptomyces sp. stanford.   总被引:4,自引:0,他引:4  
S P Goff  A Rambach 《Gene》1978,3(4):347-352
A strain of Streptomyces has been isolated which is a convenient source of a new restriction endonuclease. The enzyme has been prepared from extracts of these cells and its cleavage sites localized on phage lambda DNA. The enzyme, termed SstI, produces cohesive ends and should be useful for molecular cloning experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号