首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《FEBS letters》1985,183(2):195-200
Thermitase, a thermostable alkaline proteinase, consists of a single polypeptide chain, containing 279 amino acid residues (Mr = 28 369). The enzyme shows remarkable structural features of proteinases of the subtilisin type as shown by pronounced sequential homologies. The amino acid replacements, insertions and deletions observed when the amino acid sequence of the enzyme is compared with the sequences of several subtilisins are discussed with respect to substrate specificity and expected tertiary structure. The existence of a cysteinecontaining subgroup of subtilisin-like proteinases is postulated.  相似文献   

2.
Singlet-singlet energy transfer from the tryptophan residues to an active-site-serine-bound 5-dimethylaminonaphthalene-1-sulphonyl group was investigated in four subtilisins. The transfer distances for subtilisin Novo and mesentericopeptidase are 1.93 +/- 0.20 nm (19.3 +/- 2.0 A) and 1.81 +/- 0.20 nm (18.1 +/- 2.0 A) respectively. The positions of the indole groups in the three-dimensional structures of the two pairs of proteinases, namely subtilisin Novo and mesentericopeptidase on the one hand and subtilisins Carlsberg and DY on the other, are essentially identical.  相似文献   

3.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

4.
Extracellular serine proteinases produced by two taxonomically remote microorganisms - B. thuringiensis and T. vulgaris were shown to share common structural and functional features. Both enzymes contain cysteine residue apparently essential for their activity. Their N-terminal sequences are clearly homologous (10 coinciding residues among 14 compared), whereas only marginal extent of homology could be found when the N-terminal sequences of these enzymes were aligned with those of subtilisins. It is suggested that within the family of evolutionary related bacterial serine proteinases exists a subfamily of SH-containing serine proteinases.  相似文献   

5.
The complete amino-acid sequence of subtilisin DY, an extracellular alkaline proteinase produced by Bacillus subtilis strain DY was determined. This included automated sequence analysis of the whole molecule and its large fragments such as tryptic peptides obtained from the inactivated enzyme, peptides generated by cyanogen bromide, by o-iodosobenzoic acid and by hydroxylamine. The peptides were isolated by gel filtration and by reversed-phase high performance liquid chromatography. The amino-acid sequence of subtilisin DY was determined by overlapping the isolated peptides. It consists of 274 amino-acid residues, like that of subtilisin Carlsberg. By comparison with the structures of the subtilisins Carlsberg, amylosacchariticus and BPN' 32, 80 and 82 amino-acid substitutions were found, which are caused by 37, 102 and 106 nucleotide mutations, respectively. It was found also that 62.5% of the amino-acid residues in the molecules of these four subtilisins are identical with respect to kind and position of the residue, which suggests that these molecules have had a common ancestral precursor. The amino-acid replacement analysis of the four subtilisins leads to the conclusion that they have evolved almost independently.  相似文献   

6.
Interaction of subtilisins with serpins.   总被引:1,自引:0,他引:1       下载免费PDF全文
Serpins are well-characterized inhibitors of the chymotrypsin family serine proteinases. We have investigated the interaction of two serpins with members of the subtilisin family, proteinases that possess a similar catalytic mechanism to the chymotrypsins, but a totally different scaffold. We demonstrate that alpha 1 proteinase inhibitor inhibits subtilisin Carlsberg and proteinase K, and alpha 1 antichymotrypsin inhibits proteinase K, but not subtilisin Carlsberg. When inhibition occurs, the rate of formation and stability of the complexes are similar to those formed between serpins and chymotrypsin family members. However, inhibition of subtilisins is characterized by large partition ratios where more than four molecules of each serpin are required to inhibit one subtilisin molecule. The partition ratio is caused by the serpins acting as substrates or inhibitors. The ratio decreases as temperature is elevated in the range 0-45 degrees C, indicating that the serpins are more efficient inhibitors at high temperature. These aspects of the subtilisin interaction are all observed during inhibition of chymotrypsin family members by serpins, indicating that serpins accomplish inhibition of these two distinct proteinase families by the same mechanism.  相似文献   

7.
The gene for an alkaline serine protease from alkalophilic Bacillus sp. NKS-21 (subtilisin ALP I) was cloned, and its nucleotide sequence was determined. The gene (aprQ) contained an open reading frame of 1125 bp, encoding a primary product of 374 amino acids. The mature protease, composed of 272 amino acids, was preceded by a putative signal sequence of 37 amino acids and a pro-sequence of 65 amino acids. The mature protease conserved the catalytic triad, Asp, His, and Ser, as subtilisin BPN or other subtilisins, and the subtilisin ALP I might belong to the subtilisin super family. The primary structure of subtilisin ALP I was compared and discussed with those of 13 subtilisins, 5 subtilisins from alkalophilic Bacillus, and 8 from neutrophiles. Low homology was shown between subtilisin ALP I and subtilisins from alkalophiles or subtilisins from neutrophiles. Forty-five amino acid residues of the mature protein of subtilisin ALP I were entirely independent of other subtilisins. According to the homology of ALP I with other subtilisins, subtilisin ALP I might be in the middle point between alkaline subtilisins and neutral ones.  相似文献   

8.
A wide variety of enzymes can undergo a reversible loss of activity at low temperature, a process that is termed cold inactivation. This phenomenon is found in oligomeric enzymes such as tryptophanase (Trpase) and other pyridoxal phosphate dependent enzymes. On the other hand, cold-adapted, or psychrophilic enzymes, isolated from organisms able to thrive in permanently cold environments, have optimal activity at low temperature, which is associated with low thermal stability. Since cold inactivation may be considered "contradictory" to cold adaptation, we have looked into the amino acid sequences and the crystal structures of two families of enzymes, subtilisin and tryptophanase. Two cold adapted subtilisins, S41 and subtilisin-like protease from Vibrio, were compared to a mesophilic and a thermophilic subtilisins, as well as to four PLP-dependent enzymes in order to understand the specific surface residues, specific interactions, or any other molecular features that may be responsible for the differences in their tolerance to cold temperatures. The comparison between the psychrophilic and the mesophilic subtilisins revealed that the cold adapted subtilisins have a high content of acidic residues mainly found on their surface, making it charged. The analysis of the Trpases showed that they have a high content of hydrophobic residues on their surface. Thus, we suggest that the negatively charged residues on the surface of the subtilisins may be responsible for their cold adaptation, whereas the hydrophobic residues on the surface of monomeric Trpase molecules are responsible for the tetrameric assembly, and may account for their cold inactivation and dissociation.  相似文献   

9.
The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution   总被引:4,自引:0,他引:4  
We report here the X-ray crystal structure of native subtilisin Carlsberg, solved at 2.5 A resolution by molecular replacement and refined by restrained least squares to a crystallographic residual (Formula see text): of 0.206. we compare this structure to the crystal structure of subtilisin BPN'. We find that, despite 82 amino acid substitutions and one deletion in subtilisin Carlsberg relative to subtilisin BPN', the structures of these enzymes are remarkably similar. We calculate an r.m.s. difference between equivalent alpha-carbon positions in subtilisin Carlsberg and subtilisin BPN' of only 0.55 A. This confirms previous reports of extensive structural homology between these two subtilisins based on X-ray crystal structures of the complex of eglin-c with subtilisin Carlsberg [McPhalen, C.A., Schnebli, H.P. and James, M.N.G. (1985) FEBS Lett., 188, 55; Bode, W., Papamokos, E. and Musil, D. (1987) Eur. J. Biochem., 166, 673-692]. In addition, we find that the native active sites of subtilisins Carlsberg and BPN' are virtually identical. While conservative substitutions at residues 217 and 156 may have subtle effects on the environments of substrate-binding sites S1' and S1 respectively, we find no obvious structural correlate for reports that subtilisins Carlsberg and BPN' differ in their recognition of model substrates. In particular, we find no evidence that the hydrophobic binding pocket S1 in subtilisin Carlsberg is 'deeper', 'narrower' or 'less polar' than the corresponding binding site in subtilisin BPN'.  相似文献   

10.
Investigation of the chromosomal region downstream of the lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus revealed the presence of a gene (prtB) encoding a proteinase of 1,946 residues with a predicted molecular mass of 212 kDa. The deduced amino acid sequence showed that PrtB proteinase displays significant homology with the N termini and catalytic domains of lactococcal PrtP cell surface proteinases and is probably synthesized as a preproprotein. However, the presence of a cysteine near the histidine of the PrtB active site suggests that PrtB belongs to the subfamily of cysteine subtilisins. The C-terminal region strongly differs from those of PrtP proteinases by having a high lysine content, an imperfect duplication of 41 residues, and a degenerated sequence compared with the consensus sequence for proteins anchoring in the cell walls of gram-positive bacteria. Finally, the product of the truncated prtM-like gene located immediately upstream of the prtB gene seems too short to be involved in the maturation of PrtB.  相似文献   

11.
《FEBS letters》1986,199(2):139-144
The amino acid sequence of proteinase K (EC 3.4.21.14) from Tritirachium album Limber has been determined by analysis of fragments generated by cleavage with CNBr or BNPS-skatole. The enzyme consists of a single peptide chain containing 277 amino acid residues, corresponding to Mr 28 930. Comparison of the sequence with those of the serine proteinases reveals a high degree of homology (about 35%) to the subtilisin-related enzyme. But in contrast to the subtilisins, proteinase K contains 2 disulfide bonds and a free cysteine residue. This finding may indicate that proteinase K is a member of a new subfamily of the subtilisins.  相似文献   

12.
The gene encoding subtilisin-like protease T. kodakaraensis subtilisin was cloned from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. T. kodakaraensis subtilisin is a member of the subtilisin family and composed of 422 amino acid residues with a molecular weight of 43,783. It consists of a putative presequence, prosequence, and catalytic domain. Like bacterial subtilisins, T. kodakaraensis subtilisin was overproduced in Escherichia coli in a form with a putative prosequence in inclusion bodies, solubilized in the presence of 8 M urea, and refolded and converted to an active molecule. However, unlike bacterial subtilisins, in which the prosequence was removed from the catalytic domain by autoprocessing upon refolding, T. kodakaraensis subtilisin was refolded in a form with a putative prosequence. This refolded protein of recombinant T. kodakaraensis subtilisin which is composed of 398 amino acid residues (Gly(-82) to Gly(316)), was purified to give a single band on a sodium dodecyl sulfate (SDS)-polyacrylamide gel and characterized for biochemical and enzymatic properties. The good agreement of the molecular weights estimated by SDS-polyacrylamide gel electrophoresis (44,000) and gel filtration (40,000) suggests that T. kodakaraensis subtilisin exists in a monomeric form. T. kodakaraensis subtilisin hydrolyzed the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide only in the presence of the Ca(2+) ion with an optimal pH and temperature of pH 9.5 and 80 degrees C. Like bacterial subtilisins, it showed a broad substrate specificity, with a preference for aromatic or large nonpolar P1 substrate residues. However, it was much more stable than bacterial subtilisins against heat inactivation and lost activity with half-lives of >60 min at 80 degrees C, 20 min at 90 degrees C, and 7 min at 100 degrees C.  相似文献   

13.
Jones DD 《PloS one》2011,6(9):e24319
Combinatorial fragment exchange was utilised to recombine key structural and functional low homology regions of bacilli subtilisins to generate new active hybrid proteases with altered substrate profiles. Up to six different regions comprising mostly of loop residues from the commercially important subtilisin Savinase were exchanged with the structurally equivalent regions of six other subtilisins. The six additional subtilisins derive from diverse origins and included thermophilic and intracellular subtilisins as well as other academically and commercially relevant subtilisins. Savinase was largely tolerant to fragment exchange; rational replacement of all six regions with 5 of 6 donating subtilisin sequences preserved activity, albeit reduced compared to Savinase. A combinatorial approach was used to generate hybrid Savinase variants in which the sequences derived from all seven subtilisins at each region were recombined to generate new region combinations. Variants with different substrate profiles and with greater apparent activity compared to Savinase and the rational fragment exchange variants were generated with the substrate profile exhibited by variants dependent on the sequence combination at each region.  相似文献   

14.
We have previously isolated sphericase (Sph), an extracellular mesophilic serine protease produced by Bacillus sphaericus. The Sph amino acid sequence is highly homologous to two cold-adapted subtilisins from Antarctic bacilli S39 and S41 (76% and 74% identity, respectively). Sph is calcium-dependent, 310 amino acid residues long and has optimal activity at pH 10.0. S41 and S39 have not as yet been structurally analysed.In the present work, we determined the crystal structure of Sph by the Eu/multiwavelength anomalous diffraction method. The structure was extended to 0.93A resolution and refined to a crystallographic R-factor of 9.7%. The final model included all 310 amino acid residues, one disulfide bond, 679 water molecules and five calcium ions. Although Sph is a mesophilic subtilisin, its amino acid sequence is similar to that of the psychrophilic subtilisins, which suggests that the crystal structure of these subtilisins is very similar.The presence of five calcium ions bound to a subtilisin molecule, as found here for Sph, has not been reported for the subtilisin superfamily. None of these calcium-binding sites correlates with the well-known high-affinity calcium-binding site (site I or site A), and only one site has been described previously. This calcium-binding pattern suggests that a reduction in the flexibility of the surface loops of Sph by calcium binding may be responsible for its adaptation to mesophilic organisms.  相似文献   

15.
A cDNA clone for an inhibitor of Bombyx cysteine proteinase was isolated and sequenced. Active inhibitor proteins were expressed in Escherichia coli using the cDNA. The open reading frame of the cDNA encodes a 105 residues protein with 19 residues of a signal sequence. The inhibitor has amino acid sequences homologous to several cysteine proteinases, but only to their propeptide sequences. The results suggest that some cysteine proteinase proregions may have evolved as autonomous modules and become inhibitor proteins for cysteine proteinases.  相似文献   

16.
The subtilisins are known to be susceptible to chemical oxidation due to the conversion of Met222 into the corresponding sulfoxide. A number of derivatives with resistance towards oxidation have previously been prepared by replacement of this group with the other 19 amino acid residues. Unfortunately, the activities of these enzymes were of the order of 1-10% of that obtained with the wild-type enzyme. In contrast, the oxidation-labile cysteine mutant exhibited much higher activity, suggesting that this is associated with the presence of a sulphur atom in the amino acid at position 222. It is shown here that it is possible to maintain a sulphur atom in the amino acid at position 222 without the enzyme becoming labile towards oxidation. A subtilisin from Bacillus lentus, subtilisin 309, in which Met222 was replaced with a cysteinyl residue by site-directed mutagenesis was modified with thioalkylating reagents. Treatment of such enzyme derivatives with H2O2 revealed that their stabilities towards oxidation had increased significantly compared to both wild-type and unmodified [Cys222]subtilisin. One of the chemically modified enzyme derivatives, [Me-S-Cys222]subtilisin, exhibited a kcat/Km value of 56% of that obtained with the wild-type enzyme when assayed against the substrate Suc-Ala-Ala-Pro-Phe-NH-Ph-NO2 (Suc, succinyl) and it exhibited 89% activity when tested in an assay with dimethyl casein as a substrate. The corresponding values obtained for unmodified [Cys222]subtilisin were lower, i.e. 39% for the dimethyl casein activity and 46% for the kcat/Km for the hydrolysis of Suc-Ala-Ala-Pro-Phe-NH-Ph-NO2. This demonstrates the feasibility of replacing the oxidation-labile methionyl residue group in a subtilisin enzyme with a group stable towards oxidation without substantially reducing the activity.  相似文献   

17.
The gene encoding subtilisin-like protease T. kodakaraensis subtilisin was cloned from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. T. kodakaraensis subtilisin is a member of the subtilisin family and composed of 422 amino acid residues with a molecular weight of 43,783. It consists of a putative presequence, prosequence, and catalytic domain. Like bacterial subtilisins, T. kodakaraensis subtilisin was overproduced in Escherichia coli in a form with a putative prosequence in inclusion bodies, solubilized in the presence of 8 M urea, and refolded and converted to an active molecule. However, unlike bacterial subtilisins, in which the prosequence was removed from the catalytic domain by autoprocessing upon refolding, T. kodakaraensis subtilisin was refolded in a form with a putative prosequence. This refolded protein of recombinant T. kodakaraensis subtilisin which is composed of 398 amino acid residues (Gly−82 to Gly316), was purified to give a single band on a sodium dodecyl sulfate (SDS)-polyacrylamide gel and characterized for biochemical and enzymatic properties. The good agreement of the molecular weights estimated by SDS-polyacrylamide gel electrophoresis (44,000) and gel filtration (40,000) suggests that T. kodakaraensis subtilisin exists in a monomeric form. T. kodakaraensis subtilisin hydrolyzed the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide only in the presence of the Ca2+ ion with an optimal pH and temperature of pH 9.5 and 80°C. Like bacterial subtilisins, it showed a broad substrate specificity, with a preference for aromatic or large nonpolar P1 substrate residues. However, it was much more stable than bacterial subtilisins against heat inactivation and lost activity with half-lives of >60 min at 80°C, 20 min at 90°C, and 7 min at 100°C.  相似文献   

18.
V. V. Mosolov  M. N. Shul'gin 《Planta》1986,167(4):595-600
Specific protein inhibitors of microbial serine proteinases were isolated from wheat (Triticum aestivum L.), rye (Secale cereale L.) and triticale using affinity chromatography on subtilisin-Sepharose 4B. The wheat inhibitor had an isoelectric point (pI) at pH 7.2, while the rye inhibitor consisted of two forms with pI values of 6.8 and 7.1. In triticale, two components were present with pIs 7.2 and 6.8. All the inhibitors had M r values of approx. 20 000. The isolated proteins were effective inhibitors of subtilisins Carlsberg and BPN, and of fungal proteinases (EC 3.4.21.14) from the genus Aspergillus, but they were completely inactive against trypsin (EC 3.4.21.4) chymotrypsin (EC 3.4.21.1) and pancreatic elastase (EC 3.4.21.36). The inhibitors formed complexes with subtilisin in a molar ratio of 1:1. The results of chemical modifications seem to indicate that the isolated inhibitors have methionine residues in their reactive sites.Abbreviation pI isoelectric point  相似文献   

19.
Subtilisins represent a large class of microbial serine proteases. To date, there are three-dimensional structures of proteinaceous inhibitors from three families in complex with subtilisins in the Protein Data Bank. All interact with subtilisin via an exposed loop covering six interacting residues. Here we present the crystal structure of the complex between the Bacillus lentus subtilisin Savinase and the barley α-amylase/subtilisin inhibitor (BASI). This is the first reported structure of a cereal Kunitz-P family inhibitor in complex with a subtilisin. Structural analysis revealed that BASI inhibits Savinase in a novel way, as the interacting loop is shorter than loops previously reported. Mutational analysis showed that Thr88 is crucial for the inhibition, as it stabilises the interacting loop through intramolecular interactions with the BASI backbone.  相似文献   

20.
The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150–155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号