首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recently, we showed that both maternal malnutrition during lactation and leptin treatment during the neonatal period program thyroid function. In this study we evaluate whether maternal leptin treatment during lactation programs thyroid function of the offspring in the adulthood. The dams were divided into 2 groups: Lep-daily sc single injected with 8 microg/100 g of body weight with recombinant rat leptin during the last 3 days of lactation and control group (C) that received the same volume of saline. The 180 day-old animals received a single i.p. injection of (125)I (2.22x10(4) Bq) and they were killed 2 h after the injection. Triiodothyronine (T3), thyroxine (T4), thyrotropin (TSH) and leptin concentrations were measured by radioimmunoassay. The milk of leptin-treated mothers on the last day of treatment had higher leptin (p<0.05) concentration. The pups of the leptin-treated mothers had at 21 days an unchanged T3, T4 and leptin serum concentrations with higher TSH (p<0.05). The offspring of Lep mothers had at 180 days a higher T3 (p<0.05) with normal thyroid (125)I uptake, T4 and TSH serum concentrations compared to the controls. So, the mother's hyperleptinaemia during lactation programs to a higher T3 serum concentration on the offspring, probably by a higher leptin transfer through the milk.  相似文献   

3.

Background

Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD). The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.

Methodology/Principal Findings

Using the outbred Sprague-Dawley (SD) and inbred Brown Norway (BN) rat strains as well as their reciprocal crosses, we administered ethanol (E), pair-fed (PF), or control (C) diets to the pregnant dams. The dams'' plasma levels of free thyroxine (fT4), triiodothyronine (T3), free T3 (fT3), and thyroid stimulating hormone (TSH) were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21) to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.

Conclusions

SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding). In summary, these novel findings demonstrate both maternal and paternal genetic contributions to in utero vulnerability to alcohol, refining our understanding of the genetically-based heterogeneity seen in human FASD.  相似文献   

4.
Fetal and maternal thyroid hormones   总被引:2,自引:0,他引:2  
It is well known that insufficient production of thyroid hormones during the fetal and neonatal period of development may result in permanent brain damage unless treatment with thyroid hormone is instituted very soon after birth. But congenital hypothyroidism is not the only situation in which brain damage may be related to insufficient thyroid function. Cretinism is the most severe manifestation of iodine deficiency disorders found in areas where iodine intake is greatly reduced. Some of the manifestations of cretinism suggest that the insult to the developing brain starts earlier than in the case of congenital hypothyroidism. Hypothyroxinemia of mothers with adequate iodine intake may also leave permanent, though less severe, mental retardation. For these reasons the possible role of maternal transfer of thyroid hormones during early fetal development have been reinvestigated, using the rat to obtain various experimental models. It has been shown that thyroid hormones are found in embryonic tissues before onset of fetal thyroid function and that thyroidectomy of the mother results in delayed development of the concepta. The concentrations of T4 and T3 in embryonic tissues from thyroidectomized dams were undetectable before the onset of fetal thyroid function, and still reduced in some tissues near term, despite the onset of fetal thyroid function. Treatment of control and thyroidectomized dams with methyl-mercaptoimidazole to block fetal thyroid function reduced thyroid hormone concentrations in fetal tissues near term, but this decrease could be partially avoided by infusion of physiological doses of thyroxine to the mothers. Iodine deficiency of the mothers resulted in thyroid hormone deficiency of the developing embryo, which was very marked until term in all tissues including the brain. The results strongly support a role of maternal thyroid hormones in fetal thyroid hormone economy both before and after the onset of the fetal thyroid function, at least in the rat. They also support a role of the hypothyroxinemia of iodine-deficient mothers in initiating the brain damage of the endemic cretin, a damage which would not be corrected once the fetal thyroid becomes active, as iodine-deficiency of the fetus would impair adequate production of hormones by its own thyroid, and maternal transfer would continue to be low.  相似文献   

5.
Perinatal thyroid dysfunction in the rat leads to permanent alterations in pituitary TSH secretion in the adult animal. Thus, neonatal hyperthyroidism (NH) and perinatal hypothyroidism (PH) both result in apparent increased pituitary sensitivity to the feedback effects of thyroid hormones in the adult rat. To determine if increased intrapituitary generation of triiodothyronine (T3) might account for these observations, we measured thyroxine (T4) 5'-deiodinase activity in pituitary homogenates of adult NH and PH rats. NH was induced by injecting neonatal rats with 12 daily sc injections of T4 (0.4 microgram/g body weight (BW]. Control rats received vehicle alone. PH was induced by administering 0.05% 6-n-propylthiouracil in the drinking water to pregnant dams from the 16th day of gestation through the 12th day postpartum. Thereafter, a normal water supply was substituted. NH and PH rats were allowed to mature and were sacrificed at 105 days of age. Serum T4, T3, and TSH concentrations were measured by radioimmunoassay. Pituitary T4 5'-deiodinase activity was assessed by the measurement of T3 formation by pituitary homogenates incubated in the presence of 0.65 microM T4 and 100 mM dithiothreitol at 37 degrees C for 90 min. Body weights of adult NH and PH rats were slightly but not significantly decreased compared with control rats. Relative pituitary gland weight (milligrams per 100 g BW) was significantly decreased in adult PH rats (P less than 0.005) but not in adult NH rats. In adult NH rats, serum T4 and T3 concentrations were significantly decreased (P less than 0.01) compared with control rats. Serum TSH concentrations were similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH’s many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH’s intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25–32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.  相似文献   

7.
In order to elucidate the maternal factors influencing the functional development of the fetal rat thyroid gland, pregnant rats were subjected to either thyroidectomy or administration of PTU or TSH and the thyroid glands of the fetuses were examined chronologically by immunohistochemistry to detect thyroglobulin (Tg), T4 and T3. In the group undergoing thyroidectomy, the occurrence of immunoreactive Tg, T4 and T3 was the same as in the control group in spite of slight retardation of the development of the thyroid gland. On the other hand, PTU administration caused remarkable degeneration of the hyperplastic epithelium of the follicles, where immunoreactivity of T4 and T3 was barely detectable, suggesting a transplacental effect of PTU on the fetal thyroid gland. However, Tg remained unaffected and was stained as well as in the controls. Injection of TSH led to a delay in the occurrence of T4 and T3 by one day, probably due to increased levels of thyroid hormone from the stimulated thyroid gland of the mother rats.  相似文献   

8.
Pups whose mothers were leptin-treated during the last 3 days of lactation have thyroid dysfunction at adulthood. However, there was no report about leptin treatment in the first days of life or about its action on thyroid function during development. Here, we evaluated the effects of maternal leptin treatment on the first 10 days of lactation upon thyroid function of the offspring at 21, 30, and 180 days old. At birth, lactating Wistar rats were divided into: Leptin (Lep) - leptin-treated (8 μg/100 g of body weight, s.c.) for the first 10 days of lactation and Control (C, saline-treated). Mothers were killed at the end of lactation and their offspring at 21, 30, and 180 days old. Triiodothyronine (T3), thyroxine (T4), thyrotropin (TSH), and leptin levels in serum and milk were measured. Liver mitochondrial glycerolphosphate dehydrogenase (mGPD) activity was determined. Significant differences had p<0.05. At the end of lactation, Lep mothers had higher milk T3 (+ 30%), while their offspring had higher serum T3 (+ 20%) and TSH (+ 84%). At 30 days-old, Lep offspring showed lower TSH ( - 48%), T3 ( - 20%), and mGPDm ( - 42%). At 180 days-old, Lep group presented hyperleptinemia (1.4-fold increase), higher serum T3 (+ 22%), and lower mGPD activity ( - 57%). Maternal hyperleptinemia on lactation causes hypothyroidism in the pups at 30 days, which may program for higher serum T3 at adulthood. In conclusion, maternal hyperleptinemia during lactation, that is common in obese mothers, may have an impact in future disease development, such as thyroid dysfunction.  相似文献   

9.
The effects of hemithyroidectomy and thyrotropin administration on rat thyroid gland function were studied in adult male rats. Immediately after surgery or sham operation rats were treated daily with 0.12 IU of bovine thyrotropin (TSH) for 3 or 5 days. In control rats TSH dose applied resulted in an increase in serum T4 level at day 5 of experiment. Serum thyroxine concentration markedly decreased in sham operated and hemithyroidectomised rats, an effect observed at days 3 and 5 of experiment. TSH administration had no effect on serum T4 concentration in sham operated rats while in hemithyroidectomised animals such a treatment resulted in a marked increase in serum T4 level, a phenomenon observed in both time intervals studied. The reasons for hemithyroidectomy-induced hyperresponsiveness of rat thyroid residual lobe to thyrotropin are unknown.  相似文献   

10.
OBJECTIVE: Graves' disease (GD) with sarcoid involvement of the thyroid gland has rarely been reported. METHOD: We report a case of GD with thyroid sarcoidosis in a 28-year-old woman. Thyroid function was assessed by triiodothyronine (T(3)), thyroxine (T(4)), thyroid-stimulating hormone (TSH) and TSH receptor antibodies (TSH-R Ab). Thyroid scintigraphy, ultrasound and fine-needle aspiration biopsy were performed. The patient underwent surgery. RESULT: The patient had a nodular goiter. Serum T(3), T(4) and TSH-R Ab levels were elevated with suppressed TSH level. Scintigraphy showed diffuse activity as seen in GD, and ultrasound revealed that parenchyma was heterogenous. Sarcoidosis was discovered on routine chest X-ray. Although no sarcoid involvement was found on specimen, the thyroid gland showed non-caseating granulomas on histology. CONCLUSION: Since sarcoid involvement of the thyroid gland can cause hypofunction, we report the uncommon infiltration of sarcoidosis with hyperthyroidism.  相似文献   

11.
12.
The role of the sympathetic nervous system in the control of the goitrogenic response was examined in adult male rats subjected to unilateral superior cervical ganglionectomy 12-30 days earlier. A spontaneous goiter as well as an increased thyroid growth after the administration of the goitrogenic agents methylmercaptoimidazole and thyrotropic stimulating hormone (TSH) were found in the ipsilateral lobe. Norepinephrine and epinephrine content decreased significantly by 80 and 31%, and thyroxine (T4) and triiodothyronine (T3) content by 24 and 15%, in the ipsilateral lobe. After the injection of a tracer dose of 125I, percent radioactivity incorporation to diiodotyrosine (DIT) was higher, and that to monoiodotyrosine (MIT) lower, in the ipsilateral lobe; additionally a lower ratio "labeled T3 + T4/labeled DIT" was found in the denervated thyroid lobe. These results suggest that the sympathetic nerve terminals in the thyroid gland modulate the organ's response to circulating TSH.  相似文献   

13.
Serum thyroid hormone and TSH concentrations were measured before and after the administration of TRH (10 micrograms/kg body weight) and bovine TSH (10 IU) in 14 children with chronic lymphocytic thyroiditis. The TRH test showed that the responsiveness of TSH was positively correlated with the basal TSH (P less than 0.001) and inversely with the increase in serum thyroid hormones, for delta T3 (P less than 0.05) and for delta T4 (P less than 0.001). Overall, the patients had significantly lower mean values for basal T4, but not for T3. The TSH test revealed that the delta T3 was positively correlated with delta T4 (P less than 0.05). delta T3 after TSH administration was positively correlated with it after TRH (P less than 0.05). The patients were divided into three groups on the basis of their peak TSH values after TRH administration. In Group 1 (peak value below 40 microU/ml; N = 5); T3 increased significantly after TRH and TSH administrations (P less than 0.05 and P less than 0.025, respectively). In addition, delta T4 was significant after TSH administration. In Group 2 (peak TSH above 40 and less than 100 microU/ml; N = 6); only delta T3 after TRH was significant (P less than 0.05). In Group 3 (peak TSH above 100 microU/ml; N = 3); the response of thyroid hormones was blunted. Thus, the thyroid hormone responses to endogenous TSH coincided with that to exogenous TSH, and the exaggerated TSH response to TRH indicates decreased thyroid reserve.  相似文献   

14.
Abstract: Consumption of moderate quantities of ethanol during pregnancy produces deficits in long-term potentiation in the hippocampal formation of adult offspring. Protein kinase C (PKC)-mediated phosphorylation of the presynaptic protein GAP-43 is critical for the induction of long-term potentiation. We tested the hypothesis that this system is affected in fetal alcohol-exposed (FAE) rats by measuring GAP-43 phosphorylation and PKC activity in the hippocampus of adult offspring of rat dams that had consumed one of three diets throughout gestation: (a) a 5% ethanol liquid diet, which produced a maternal blood ethanol concentration of 83 mg/dl (FAE); (b) an isocalorically equivalent 0% ethanol diet (pair-fed); or (c) lab chow ad libitum. Western blot analysis using specific antibodies to PKC-phosphorylated GAP-43 revealed that FAE rats had an ∼50% reduction in the proportion of phosphorylated GAP-43. Similarly, we found that PKC-mediated incorporation of 32P into GAP-43 was reduced by 85% in hippocampal slices from FAE rats compared with both control groups. FAE animals also showed a 50% reduction in total hippocampal PKC activity, whereas the levels of six major PKC isozymes did not change in any of the diet groups. These results suggest that GAP-43 phosphorylation deficits in rats prenatally exposed to moderate levels of ethanol are not due to alterations in the expression of either the enzyme or substrate protein, but rather to a defect in kinase activation.  相似文献   

15.
Developmental programming of hypertension is associated with vascular dysfunction characterized by impaired vasodilatation to nitric oxide, exaggerated vasoconstriction to ANG II, and microvascular rarefaction appearing in the neonatal period. Hypertensive adults have indices of increased oxidative stress, and newborns that were nutrient depleted during fetal life have decreased antioxidant defenses and increased susceptibility to oxidant injury. To test the hypothesis that oxidative stress participates in early life programming of hypertension, vascular dysfunction, and microvascular rarefaction associated with maternal protein deprivation, pregnant rats were fed a normal, low protein (LP), or LP plus lazaroid (lipid peroxidation inhibitor) isocaloric diet from the day of conception until delivery. Lazaroid administered along with the LP diet prevented blood pressure elevation, enhanced vasomotor response to ANG II, impaired vasodilatation to sodium nitroprusside, and microvascular rarefaction in adult offspring. Liver total glutathione was significantly decreased in LP fetuses, and kidney eight-isoprostaglandin F2alpha (8-isoPGF(2alpha)) levels were significantly increased in adult LP offspring; these modifications were prevented by lazaroid. Renal nitrotyrosine abundance and blood levels of 1,4-dihydroxynonene and 4-hydroxynonenal-protein adducts were not modified by antenatal diet exposure. This study shows in adult offspring of LP-fed dams prevention of hypertension, vascular dysfunction, microvascular rarefaction, and of an increase in indices of oxidative stress by the administration of lazaroid during gestation. Lazaroid also prevented the decrease in antioxidant glutathione levels in fetuses, suggesting an antenatal mild oxidative stress in offspring of LP-fed dams. These studies support the concept that perinatal oxidative insult can lead to permanent alterations in the cardiovascular system development.  相似文献   

16.
Thyroid function was studied in small for gestational age (SGA) or control newborn lambs. Neonatal changes in plasma concentrations of TSH, T3, rT3, total and free T4 were monitored, and thyroid scintigraphs were performed. Responsiveness of the hypothalamic-pituitary-thyroid axis to cold exposure and TRH or TSH administration was assessed. In addition, T4 and T3 kinetic studies were performed. In agreement with results obtained in babies, plasma T3, total T4 and free T4 concentrations were depressed in low birth weight animals, whereas TSH and rT3 levels were not affected. Thyroid size expressed relatively to the body weight was higher in SGA animals, thus suggesting that a partial compensation for low thyroid hormone levels had occurred during the fetal life. Plasma TSH and T4 concentrations increased by a same extent after exposure to cold and TRH or TSH administration in SGA and control lambs; however, the rise in T3 levels was depressed in the former in all stimulation tests. T3 and T4 production rates were similar in the two experimental groups. In SGA lambs, the metabolic clearance rate and the total distribution space of these two hormones were significantly increased; the fast T3 pool was higher, and the slow T3 pool lower than in control animals. All these results demonstrate that, despite low circulating thyroid hormone concentrations, SGA lambs are not hypothyroid. An increased T4 and T3 storage in the extravascular compartment is probably the major factor involved in the occurrence of this plasma deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Studies were conducted to determine if brief exposure, in utero, to high levels of T4 or to the synthetic thyromimetic agent 3,5-dimethyl-3'-isopropyl-L-thyronine (DIMIT) can produce permanent disruption of the thyroid control system in a manner analogous to the changes in the "set point" reported to occur due to neonatal T4 exposure in the "neo-T4 syndrome". If such a change were to occur, it could explain the persistent thyroid disturbances seen in the progeny of hypothyroid mother rats. These latter progeny are exposed in utero to both low and high serum T4 levels. Maternal T4 treatment produced a 4-fold elevation in fetal serum T4 accompanied by a large decrease in serum TSH levels. The brief treatment in utero with high doses of T4 or of DIMIT resulted in higher neonatal mortality and the T4-treatment produce subsequent growth stunting. These treatments resulted in suppression of the fetal/neonatal thyroid which was very apparent at 5 days of age. At 30 days post-partum, the thyroid control system of the progeny of the T4 and DIMIT-treated animals was still abnormal with low serum T4 levels accompanied with normal serum TSH and T3 levels. At 60 days of age, serum T4 levels remained low in the progeny of the T4-treated animals and the TSH response to TRH was subnormal in both the progeny of the T4-treated and the DIMIT-treated animals. However, serum and pituitary TSH and serum T3 were normal. The thyroid control system of the rat is sensitive to prenatal exposure to hyperthyroxinemia as it is to postnatal exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Thyroid function of 60 children with Down (DS) aged 3 months to 16 years was studied by evaluation of serum concentration of ultra-sensitive thyroid stimulating hormone (TSH), free T4 and T3 (FT4, FT3), total T4 and T3 (T4 and T3) and reverse T3 (rT3). Each DS child was matched to a control of the same age. The concentration of TSH was increased in DS children while the concentration of rT3 of the DS children was significantly decreased compared to the controls as was the ratio rT3/TSH. These results showed that thyroid function of DS children is abnormal.  相似文献   

19.
Sex steroids interfere with the pituitary-thyroid axis function, although the reports have been controversial and no conclusive data is available. Some previous reports indicate that estradiol might also regulate thyroid function through a direct action on the thyrocytes. In this report, we examined the effects of low and high doses of estradiol administered to control and ovariectomized adult female rats and to pre-pubertal females. We demonstrate that estradiol administration to both intact adult and pre-pubertal females causes a significant increase in the relative thyroid weight. Serum T3 is significantly decreased in ovariectomized rats, and is normalized by estrogen replacement. Neither doses of estrogen produced a significant change in serum TSH and total T4 in ovariectomized, adult intact and pre-pubertal rats. The highest, supraphysiological, estradiol dose produced a significant increase in thyroid iodide uptake in ovariectomized and in pre-pubertal rats, but not in control adult females. Thyroperoxidase activity was significantly higher in intact adult rats treated with both estradiol doses and in ovariectomized rats treated with the highest estradiol dose. Since serum TSH levels were not significantly changed, we suggest a direct action of estradiol on the thyroid gland, which depends on the age and on the previous gonad status of the animal.  相似文献   

20.
Thyroid-stimulating hormone (TSH) controls thyroid growth and hormone secretion through binding to its G protein-coupled receptor (TSHR) and production of cyclic AMP (cAMP). Serum TSH is a sensitive indicator of thyroid function, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over a life span. By genotyping 362,129 SNPs in 4,300 Sardinians, we identified a strong association (p = 1.3 x 10(-11)) between alleles of rs4704397 and circulating TSH levels; each additional copy of the minor A allele was associated with an increase of 0.13 muIU/ml in TSH. The single-nucleotide polymorphism (SNP) is located in intron 1 of PDE8B, encoding a high-affinity cAMP-specific phosphodiesterase. The association was replicated in 4,158 individuals, including additional Sardinians and two genetically distant cohorts from Tuscany and the Old Order Amish (overall p value = 1.9 x 10(-20)). In addition to association of TSH levels with SNPs in PDE8B, our genome scan provided evidence for association with PDE10A and several biologically interesting candidates in a focused analysis of 24 genes. In particular, we found evidence for association of TSH levels with SNPs in the THRB (rs1505287, p = 7.3 x 10(-5)), GNAQ (rs10512065, p = 2.0 x 10(-4)), TG (rs2252696, p = 2.2 x 10(-3)), POU1F1 (rs1976324, p = 3.9 x 10(-3)), PDE4D (rs27178, p = 8.3 x 10(-3)), and TSHR (rs4903957, p = 8.6 x 10(-3)) loci. Overall, the results suggest a primary effect of PDE8B variants on cAMP levels in the thyroid. This would affect production of T4 and T3 and feedback to alter TSH release by the pituitary. PDE8B may thus provide a candidate target for the treatment of thyroid dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号