首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding isotherms of Mn2+ to bovine plasma protein C (PC), des(1-41)-light chain protein C (GDPC), and activated GDPC (GDAPC) have been measured. PC contains 14-16 total Mn2+ binding sites, a value that is reduced to approximately 7-8 in the presence of NaCl. The average Kd of the latter sites is 230 +/- 30 microM. Upon removal of a 41-residue peptide from the amino terminus of the light chain of PC, and, concomitantly, all of the gamma-carboxyglutamic acid residues, the resulting protein, GDPC, possesses a single Mn2+ site of Kd = 120 +/- 20 microM. Activation of GDPC to GDAPC results in a slight lowering of the Kd for the single Mn2+ binding site to 53 +/- 8 microM, a value that is essentially unchanged in the presence of monovalent cations, a competitive inhibitor of the enzyme, or an active site directed affinity label. The Mn2+ on GDAPC is displaced by Ca2+, suggesting that the protein binding site for these two divalent cations is the same. These studies establish that Mn2+ is a suitable spectroscopic probe for the Ca2+ binding site of GDAPC, and that the divalent cation site is separate from the monovalent cation site(s) and the active site of the enzyme.  相似文献   

2.
The kinetic properties of the activation by monovalent cations of the amidolytic activity of bovine des-1-41 light chain activated protein C have been examined. With the cations Cs+, K+, Li+, and Tl+, a single cation site, or class of sites, has been found to be responsible for the stimulation observed, with kinetic Ka values of 98-110, 180-210, 300-310, and 14-16 mM, respectively. The mechanism proposed for participation of these cations in the enzyme reaction involves an ordered addition, with the binding of cation preceding the binding of the amide substrate. On the other hand, the kinetic properties of this same activation by Na+ are consistent with either two cation sites, or classes of sites, of importance. Once again, however, the mechanism of the reaction appears to be of the ordered type, with cation binding occurring prior to substrate binding.  相似文献   

3.
A pre-steady state kinetic analysis of the stimulation by monovalent cations of the activity of bovine activated protein C (APC) and a proteolytic fragment of APC, des-1-41-light chain activated protein C (GDAPC), toward the substrate, 4-methylumbelliferyl p-guanidinobenzoate, has been undertaken. With the cations Na+ and Cs+, at least two cation sites, or classes of sites, on APC were found to be important to the kinetic effects observed. For GDAPC, with both monovalent cations investigated, a single cation-binding site, or class of sites, of kinetic importance was discovered. The most general mechanism that fits all kinetic data was a rapid equilibrium type, with the cation(s) (A) and substrate (S) binding to the enzyme in a random fashion. Cations were found to be essential activators, and only formation of the EAS or EA2S complex led to product generation. For each enzyme, stimulation of the reaction rates was found to be chiefly due to a dramatic enhancement by monovalent cations of the rate constant (k2) for acylation of the enzyme since the dissociation constant (Ks) for enzyme-substrate interactions was increased in the presence of cations, and the deacylation rate constant (k3) was not affected by these activators.  相似文献   

4.
A study of the effect of monovalent cations on the steady-state kinetic parameters for the hydrolysis of the synthetic substrate N alpha-benzoyl-L-arginine-p-nitroanilide by activated bovine plasma protein C (APC) has been undertaken. The enzyme displayed a strict requirement for monovalent cations in its expression of amidolytic activity toward this substrate. Analysis of the variation in initial hydrolytic reaction rates, as a function of metal ion concentrations, suggested that at least two cation sites, or classes of sites, were necessary for catalysis to occur. After examination of the rate equations consequential to many different enzymic mechanisms that could account for these kinetic data, a mechanism was developed that fit the great majority of the experimental observations. In this mechanism it is postulated that cations bind to the enzyme in pairs, with a kinetically observable single binding constant, either preceded by or followed by binding of substrate. Catalysis occurs only after the enzyme-(metal cation)2-substrate complex is assembled. Some physical support for this mechanism was obtained upon the discovery that the binding (dissociation) constant for a competitive inhibitor of APC, p-aminobenzamidine, as determined by kinetic methodology, was independent of the concentration of Na+ and Cs+.  相似文献   

5.
Interactions of types I, II, and III protein kinase C (PKC) with phospholipids were investigated by following the changes in protein kinase activity and phorbol ester binding. The acidic phospholipids such as phosphatidylserine (PS), phosphatidic acid, phosphatidyl-glycerol, and cardiolipin, which are activators of PKC in the assay of protein phosphorylation, could differentially inactivate PKC I, II, and III during preincubation in the absence of divalent cation. The phospholipid-induced inactivation of PKC was concentration and time dependent and only affected the kinase activity without influencing phorbol ester binding. PKC I was the most susceptible to the phospholipid-induced inactivation, and PKC III was the least. The IC50 values of PS for PKC I, II, and III were 5, 45, and greater than 120 microM, respectively. Addition of divalent cation such as Ca2+ or Mg2+ suppressed the phospholipid-induced inactivation of PKC. In the absence of divalent cation, PKC I, II, and III all formed complexes with PS vesicles, although to a slightly different degree, as analyzed by molecule sieve chromatography. [3H]Phorbol 12,13-dibutyrate binding for PKC I, II, and III was recovered after chromatography; however, the kinase activities of all these enzymes were greatly reduced. In the presence of Ca2+, all three PKCs formed complexes with PS vesicles, and both the kinase and phorbol ester-binding activities of PKC II and III were recovered following chromatography. Under the same conditions, the phorbol ester-binding activity of PKC I was also recovered, but the kinase activity was not. The phospholipid-induced inactivation of PKC apparently results from a direct interaction of phospholipid with the catalytic domain of PKC; this interaction can be suppressed by divalent cations. In the presence of divalent cations, PS interacted preferentially with the regulatory domain of PKC and resulted in the activation of the kinase.  相似文献   

6.
Regulation of activated protein C by thrombin-modified protein S   总被引:5,自引:0,他引:5  
Protein S, a vitamin K-dependent plasma protein having Gla-residues, increases the rate of inactivation of Factor Va by activated protein C by enhancing the binding of activated protein C to phospholipid [Walker, J.F. (1981) J. Biol. Chem. 256, 11128-11131]. The present study aimed at elucidating the effect of thrombin-modified protein S on Factor Va inactivation by activated protein C. Nondigested protein S consisted 81% of intact form and 19% of modified form, and thrombin-digested protein S had 96% modified form. Protein S, both nondigested and digested, did not show any effects on the amidolytic activity of activated protein C towards synthetic peptide substrate. Nondigested protein S stimulated the Factor Va inactivation by activated protein C, whereas the digested protein appeared to suppress the inactivation. Protein-phospholipid binding experiments showed that although nondigested protein S enhanced the binding of activated protein C to phospholipid stoichiometrically, digested protein S appeared to not only suppress the complex formation, but also dissociate the complex. This evidence suggested that protein S modified by thrombin regulates the action of activated protein C towards Factor Va on phospholipid.  相似文献   

7.
The effect of replacing the gamma-carboxyglutamic acid domain of activated protein C (APC) with that of prothrombin on the topography of the membrane-bound enzyme was examined using fluorescence resonance energy transfer. The average distance of closest approach (assuming kappa2 = 2/3) between a fluorescein in the active site of the chimera and octadecylrhodamine at the membrane surface was 89 A, compared with 94 A for wild-type APC. The gamma-carboxyglutamic acid domain substitution therefore lowered and/or reoriented the active site, repositioning it close to the 84 A observed for the APC. protein S complex. Protein S enhances wild-type APC cleavage of factor Va at Arg306, but the inactivation rate of factor Va Leiden by the chimera alone is essentially equal to that by wild-type APC plus protein S. These data suggest that the activities of the chimera and of the APC.protein S complex are equivalent because the active site of the chimeric protein is already positioned near the optimal location above the membrane surface to cleave Arg306. Thus, one mechanism by which protein S regulates APC activity is by relocating its active site to the proper position above the membrane surface to optimize factor Va cleavage.  相似文献   

8.
Thirteen monoclonal antibodies designated as MFC-1 to MFC-13 were obtained from hybridoma cells cloned after the fusion of mouse myeloma cells with spleen cells of mice immunized with purified human protein C. Studies were made to determine where the antibodies bound to the molecule of protein C and whether they affected the biological actions of protein C. By using the immunoblotting technique, six of these antibodies were shown to bind to the light chain of protein C, and five to the heavy chain of protein C and also activated protein C. The remaining two antibodies bound to neither the light chain nor the heavy chain, though both antibodies bound to the intact protein C. Antibodies specific for the light chain did not bind to the gamma-carboxyglutamic acid-domain. Two of the antibodies specific for the heavy chain (MFC-13 and -1) inhibited the amidolytic activity of activated protein C. The MFC-13 also inhibited the activity of bovine activated protein C, but not that of human Factor IXa, Factor Xa, or thrombin. In addition to these two antibodies, another one for the heavy chain (MFC-10) and two antibodies for the light chain (MFC-9 and -11) inhibited the inactivation of Factor Va by human activated protein C. One of the antibodies which inhibited the enzyme activity (MFC-1) blocked the inhibition of activated protein C by protein C inhibitor. Another one for the heavy chain (MFC-5) inhibited the activation of protein C by thrombin regardless of the presence or absence of thrombomodulin. Based on these results, we have established the positions of some monoclonal antibody-binding sites on the protein C molecule.  相似文献   

9.
The paramagnetic effect of Mn2+ on the longitudinal relaxation rate (T1)-1 of 205Tl+, when both cations are bound to des-1-41-light chain bovine plasma protein C (GDPC) and its activation product, des-1-41-light chain-activated bovine plasma protein C (GDAPC), has been assessed by 205Tl+ NMR spectroscopy. A substantial shortening of the T1 for Tl+ bound to either protein was observed in the presence of Mn2+, an effect not noted upon substitution of Mn2+ with the diamagnetic cation Ca2+, which is known to bind to these proteins in a similar fashion to Mn2+. This paramagnetic effect was employed to estimate distances between the monovalent and divalent cation sites in these proteins, approximately 6.7 +/- 0.2 A with GDPC and 8.3 +/- 0.2 A in GDAPC. These data suggest that a conformational alteration occurs upon activation of GDPC which leads to an increase in the distance between the monovalent and divalent cation sites.  相似文献   

10.
The prothrombin-converting activity of Factor Xa was enhanced by thrombin-stimulated Factor V-deficient platelets and supplementary extraneous Factor Va, and also by thrombin-stimulated normal human platelets. Both extraneous Factor Va and intra-platelet Factor Va were equally inactivated by a gamma-carboxyglutamic acid-containing plasma protease, activated protein C. However, a relatively larger amount of activated protein C was required for efficient inactivation of platelet-associated Factor Va as compared with the amount of activated protein C needed for inactivation of phospholipid vesicle-associated Factor Va. Protein S, another gamma-carboxyglutamic acid-containing plasma protein, increased the rate of the inactivation of platelet-associated Factor Va about 25-fold. This stimulating effect was observed only slightly with the thrombin-modified protein S. Thus, it was concluded that protein S is essential for the process of inactivation of platelet-associated Factor Va by activated protein C.  相似文献   

11.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

12.
L Zhang  F J Castellino 《Biochemistry》1991,30(27):6696-6704
In order to examine whether the structural integrity of the hexapeptide disulfide loop (residues 17-22), present in the gamma-carboxyglutamic acid (gamma) domain of human protein C (PC), and common to all vitamin K dependent coagulation proteins, is necessary for its anticoagulant properties, we employed recombinant (r) DNA technology to generate two important variants that would address this issue. One such mutein contained aspartic acid for gamma-residue substitutions at sequence positions 19 and 20 ([gamma 19D, gamma 20D]r-PC) in the light chain of the mature protein, and the other possessed a serine for cysteine substitution at position 22 ([C22S]r-PC of the same light chain. A subpopulation of molecules of these mutant proteins, containing the maximum levels of gamma-residues in each, has been purified by fast-protein anion-exchange liquid chromatography and affinity chromatography on an anti-human PC column. A study of the kinetic characteristics of the inhibition by Ca2+ of the thrombin-catalyzed activation rates of these variants, and the corresponding stimulation by Ca2+ of the thrombin/thrombomodulin-catalyzed activation rates of the same recombinant PC molecules, demonstrated that higher concentrations of Ca2+ were required to display these effects, when compared to wild-type (wt) r-PC and human plasma PC. This suggested that the kinetically relevant Ca2+ site responsible for these effects on activation of PC, and known to be present in another domain of PC, was affected by both mutations in the gamma-domain. The recombinant PC variants were converted to their activated forms ([gamma 19D, gamma 20D]r-APC and [C22S]r-APC) and assayed for their Ca(2+)-dependent anticoagulant activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Effect of divalent cations bound to the phosphoenzyme intermediate of the ATPase of sarcoplasmic reticulum was investigated at 0 degree C and pH 7.0 using the purified ATPase preparations. Our previous study (Shigekawa, M., Wakabayashi, S., and Nakamura, H. (1983) J. Biol. Chem. 258, 14157-14161) indicated that 1 mol of the ADP-sensitive phosphoenzyme (E1P) formed from CaATP has 3 mol of high affinity binding sites for Ca2+, of which two are transport sites for calcium while the remainder is the acceptor site for calcium derived from the substrate, CaATP ("substrate site"). When incubated with a chelator of divalent cation, E1P formed from CaATP released all of its bound calcium to form a divalent cation-free phosphoenzyme. Evidence was presented that calcium dissociation from the substrate site was faster than that from the transport sites and primarily responsible for the ADP sensitivity loss of E1P induced by the chelator. Divalent cation-free phosphoenzyme was kinetically stable but when treated with divalent cations, it behaved similarly to the ADP-insensitive phosphoenzyme (E2P) which is the normal reaction intermediate of ATP hydrolysis. 45Ca bound at the substrate site on E1P formed from 45CaATP exchanged readily with nonradioactive ionized Ca2+ in the reaction medium whereas 45Ca at the transport sites on E1P was displaced only at a very slow rate which was almost the same as that for the phosphoenzyme hydrolysis. It was suggested that calcium at the transport sites on E1P formed from CaATP is released only after the rate-limiting conformational transition of the phosphoenzyme from E1P to E2P and that removal of calcium by a chelator from the substrate site facilitates this conformational transition, thereby allowing calcium bound at the transport sites to be released readily from the phosphoenzyme.  相似文献   

14.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

15.
B Dahlb?ck  T Wiedmer  P J Sims 《Biochemistry》1992,31(51):12769-12777
Vitamin K-dependent protein S is an anticoagulant plasma protein serving as cofactor to activated protein C in degradation of coagulation factors Va and VIIIa on membrane surfaces. In addition, it forms a noncovalent complex with complement regulatory protein C4b-binding protein (C4BP), a reaction which inhibits its anticoagulant function. Both forms of protein S have affinity for negatively charged phospholipids, and the purpose of the present study was to elucidate whether they bind to the surface of activated platelets or to platelet-derived microparticles. Binding of protein S to human platelets stimulated with various agonists was examined with FITC-labeled monoclonal antibodies and fluorescence-gated flow cytometry. Protein S was found to bind to membrane microparticles which formed during platelet activation but not to the remnant activated platelets. Binding to microparticles was saturable and maximum binding was seen at approximately 0.4 microM protein S. It was calcium-dependent and reversed after the addition of EDTA. Inhibition experiments with monoclonal antibodies suggested the gamma-carboxyglutamic acid containing module of protein S to be involved in the binding reaction. An intact thrombin-sensitive region of protein S was not required for binding. The protein S-C4BP complex did not bind to microparticles or activated platelets even though it bound to negatively charged phospholipid vesicles. Intact protein S supported binding of both protein C and activated protein C to microparticles. Protein S-dependent binding of protein C/activated protein C was blocked by those monoclonal antibodies against protein S that inhibited its cofactor function. In conclusion, we have found that free protein S binds to platelet-derived microparticles and stimulates binding of protein C/activated protein C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Inorganic pyrophosphatases (PPiases) from both yeast and Escherichia coli were found to be stable against heat denaturation in the presence of Mg2+, as previously observed with the enzymes from thermophilic bacteria. No loss of activity was observed after 1 h of incubation at 50 degrees C and pHs between 6 and 9 in the yeast enzyme, and at 60 degrees C and pHs between 7.2 and 9.2 in the E. coli enzyme. Such an induced thermostability of the E. coli enzyme was detected when Mn2+, Co2+, Ca2+, Cd2+, and Zn2+ were added in place of Mg2+. On the other hand, the degree of induced thermostability of the yeast enzyme was dependent upon the divalent cations used, and Ni2+ and Cu2+ accelerated the heat inactivation. On adding the divalent cations, the difference spectra of the E. coli enzyme always showed negative peaks in the ultraviolet region, but those of the yeast enzyme changed again depending upon the divalent cations. The circular dichroism spectra in the near ultraviolet region of both enzymes greatly differed from each other, but both were not affected so much by adding the divalent cations unlike the thermophilic enzymes from Bacillus stearothermophilus and thermophilic bacterium PS-3. Yeast and E. coli PPiases did not cross-link with the anti-immunoglobulin G's from the thermophilic enzymes, but the thermophilic enzymes did with each other's antisera. The results in the present study indicated that the conformation of PPiase, in which the aromatic amino acid residues were buried in the interior of the protein molecule, was very important for the thermostability and also that the protein structures of PPiases from B. stearothermophilus and thermophilic bacterium PS-3 were very similar to each other, but were very different from those of the mesophilic enzymes.  相似文献   

17.
Proteolysis of factor Va by factor Xa and activated protein C   总被引:6,自引:0,他引:6  
Bovine Factor Va, produced by selective proteolytic cleavage of Factor V by thrombin, consists of a heavy chain (D chain) of Mr = 94,000 and a light chain (E chain) of Mr = 74,000. These peptides are noncovalently associated in the presence of divalent metal ion(s). Each chain is susceptible to proteolysis by activated protein C and by Factor Xa. Sodium dodecyl sulfate electrophoretic analysis indicates that cleavage of the E chain by either activated protein C or Factor Xa yields two major fragments: Mr = 30,000 and Mr = 48,000. Amino acid sequence analysis indicates that the Mr = 30,000 fragments have identical NH2-terminal sequences and that this sequence corresponds to that of intact E chain. The Mr = 48,000 fragments also have identical NH2-terminal sequences, indicating that activated protein C and Factor Xa cleave the E chain at the same position. Sodium dodecyl sulfate electrophoretic analysis indicates that activated protein C cleavage of the D chain yields two products: Mr = 70,000 and Mr = 24,000. Amino acid sequence analysis indicates that the Mr = 70,000 fragment has the same NH2-terminal sequence as intact D chain, whereas the Mr = 24,000 fragment does not. Factor Xa cleavage of the D chain also yields two products: Mr = 56,000 and Mr = 45,000. The Mr = 56,000 fragment corresponds to the NH2-terminal end of the D chain and Factor V. Functional studies have shown that both chains of Factor Va may be entirely cleaved to products by Factor Xa without loss of activity, whereas activated protein C cleavage results in loss of activity. Since activated protein C and Factor Xa cleave the E chain at the same position, the cleavage of the D chain by activated protein C is responsible for the inactivation of Factor Va.  相似文献   

18.
Interaction of calcium with bovine plasma protein C   总被引:2,自引:0,他引:2  
The binding of 45Ca2+ to bovine plasma protein C (PC) and to activated bovine plasma protein C (APC) has been examined by equilibrium ultrafiltration at pH 7.4 and 25 degrees C. Under these conditions, PC possesses 16.0 plus or minus 2.0 equivalent Ca2+ binding sites, of average KD (8.7 plus or minus 1.5) x 10(-4) M, and APC contains 9.0 plus or minus 1.0 equivalent Ca2+ binding sites, with an average KD of (4.3 plus or minus 1.1) x 10(-4) M. Both Mn2+ and Sr2+ were capable of ready displacement of Ca2+ from a Ca2+-PC complex, while Mg2+ was less effective in this regard. The alpha-thrombin-catalyzed activation of PC was inhibited by the presence of Ca2+. A kinetic analysis of this effect demonstrated that it was, in large part, due to an increase in the Km of the reaction. Addition of other divalent cations, e.g. Mn2+, Sr2+, and Mg2+, in place of Ca2+ also resulted in inhibition of the alpha-thrombin-catalyzed activation of PC in a manner which paralleled their ability to displace Ca2+ from a Ca2+-PC complex. On the other hand, the activation of PC by the coagulant protein from Russell's Viper venom was augmented by the presence of Ca2+. Other divalent metal ions, such as Sr2+ and Mn2+, in the absence of Ca2+, also weakly stimulated this reaction. Mg2+ was without notable effect.  相似文献   

19.
Protein S and C4b-binding protein (C4BP) form a tight complex (Kd approximately 0.6 nM) the physiologic purpose of which is unknown. The participation of protein S in this complex was investigated using site-specific mutagenesis. Normal recombinant human protein S (rHPS) and five specifically mutated protein S analogs were expressed in transformed human kidney 293 cells and the following properties were characterized: solution-phase C4BP binding, ability to be cleaved by thrombin, ability to act as a cofactor in the activated protein C-catalyzed inactivation of factor Va, and gamma-carboxyglutamic acid content. In some cases, beta-hydroxyaspartic acid plus beta-hydroxyasparagine content was also determined. Binding studies indicated that while clearly important for a high affinity interaction, the amino acid sequence Gly605-Ile614 identified by Walker (Walker, F J. (1989) J. Biol. Chem. 264, 17645-17648) does not account for all the binding energy of the HPS-C4BP interaction. All mutants perturbed in this region or lacking it altogether displayed reduced C4BP binding, and some retained anticoagulant cofactor function. Neither human factor X nor human steroid-binding protein had any measurable ability to compete with plasma HPS for C4BP binding. Furthermore, bovine protein S and a rHPS analog with bovine sequence from Gly597-Trp629 bound to human C4BP with the same affinity as did HPS, and both proteins substituted effectively for HPS as a cofactor for activated protein C in an otherwise human anticoagulation system. Together these results suggest that optimal binding of protein S to C4BP requires the putative alpha-helix Gly605-Ile614, as well as other undetermined regions of protein S, and that the regions of HPS responsible for C4BP binding and activated protein C cofactor function are structurally isolated.  相似文献   

20.
Previous studies have suggested that the conformation of the activation peptide of protein C is influenced by the binding of Ca(2+). To provide direct evidence for the linkage between Ca(2+) binding and the conformation of the activation peptide, we have constructed a protein C mutant in the gamma-carboxyglutamic acid-domainless form in which the P1 Arg(169) of the activation peptide is replaced with the fluorescence reporter Trp. Upon binding of Ca(2+), the intrinsic fluorescence of the mutant decreases approximately 30%, as opposed to only 5% for the wild-type, indicating that Trp(169) is directly influenced by the divalent cation. The K(d) of Ca(2+) binding for the mutant protein C was impaired approximately 4-fold compared with wild-type. Interestingly, the conformation of the activation peptide was also found to be sensitive to the binding of Na(+), and the affinity for Na(+) binding increased approximately 5-fold in the presence of Ca(2+). These findings suggest that Ca(2+) changes the conformation of the activation peptide of protein C and that protein C is also capable of binding Na(+), although with a weaker affinity compared with the mature protease. The mutant protein C can no longer be activated by thrombin but remarkably it can be activated efficiently by chymotrypsin and by the thrombin mutant D189S. Activation of the mutant protein C by chymotrypsin proceeds at a rate comparable to the activation of wild-type protein C by the thrombin-thrombomodulin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号