首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the effect of progesterone on the synthesis and secretion of gonadotropins, ovariectomized ewes either were treated with progesterone (n = 5) for 3 wk or served as controls (n = 5) during the anestrous season. After treatment for 3 wk, blood samples were collected from progesterone-treated and ovariectomized ewes. After collection of blood samples, hypothalamic and hypophyseal tissues were collected from all ewes. Half of each pituitary was used to determine the content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the number of receptors for gonadotropin-releasing hormone (GnRH). The amounts of mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were measured in the other half of each pituitary. Treatment with progesterone reduced mean serum concentrations of LH (p less than 0.001) but ot FSH (p greater than 0.05). Further, progesterone decreased (p less than 0.05) the total number of pulses of LH. We were unable to detect pulsatile release of FSH. Hypothalamic content of GnRH, number of receptors for GnRH, pituitary content of gonadotropins and mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were not affected (p greater than 0.05) by treatment with progesterone. Thus, after treatment with progesterone, serum concentrations of LH (but not FSH) are decreased. This effect, however, is not due to a decrease in the steady-state amount of mRNA for LH beta or alpha subunits.  相似文献   

2.
To test the hypothesis that the synthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are differentially regulated after depletion by oestradiol, circulating concentrations of oestradiol were maintained at approximately 30 pg/ml for 16 days in each of 35 ovariectomized ewes. Five other ovariectomized ewes that did not receive oestradiol implants served as controls. After treatment with oestradiol, implants were removed and pituitary glands were collected from each of 5 ewes at 0, 2, 4, 8, 12, 16 and 32 days thereafter and amounts of mRNA for gonadotrophin subunits and contents of LH and FSH were quantified. Before collection of pituitary glands, blood samples were collected at 10-min intervals for 6 h. Treatment with oestradiol reduced (P less than 0.05) steady-state concentrations of LH beta- and FSH beta-subunit mRNAs and pituitary and serum concentrations of these hormones. At the end of treatment the amount of mRNA for FSH beta-subunit was reduced by 52% whereas that for LH beta-subunit was reduced by 93%. Steady-state concentrations of mRNA for FSH beta-subunit returned to control values within 2 days of removal of oestradiol, but 8 days were required for concentrations of FSH in the pituitary and serum to return to control values. Steady-state concentrations of mRNA for LH beta-subunit and mean serum concentrations of LH returned to control values by Day 8, but pituitary content of LH may require as long as 32 days to return to control levels. Therefore, replenishment of FSH beta-subunit mRNA preceded increases in pituitary and serum concentrations of FSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A study was conducted to identify relationships between serum sex steroid concentrations and release of gonadotropins in dairy cows with ovarian cysts. Cows with ovarian cysts were grouped according to sex steroid profiles as being under estrogenic (n = 6) or low steroid (n = 6) influence. All cows were submitted to a sampling and treatment protocol to 1) record basal pulsatile release of gonadotropins and 2) determine whether luteinizing hormone (LH) or follicle stimulating hormone (FSH) was released after sequential administration of exogenous estradiol and gonadotropin releasing hormone (GnRH) treatments were given 30 h apart. Basal LH was higher in the estrogen-influence group (P < 0.05). There were no differences between groups in basal FSH concentrations or frequency and amplitude of pulsatile LH or FSH release. Only one of the twelve cows, an individual from the low steroid group, had a preovulatory-like surge of gonadotropins after exogenous estradiol. All cows released LH and FSH in response to GnRH treatment, with no differences between groups. These results show that 1) there is considerable variation in pulsatile release of gonadotropins in cows with ovarian cysts, even among individuals with similar sex steroid profiles, and 2) suggest that a factor in the persistence, and perhaps initiation, of the cystic condition is refractoriness to the positive feedback effect of estradiol on gonadotropin release.  相似文献   

4.
The functional and temporal relationships between circulating gonadotropins and ovarian hormones in mares during Days 7-27 (ovulation = Day 0) was studied using control, follicle ablation, and ovariectomy groups (n = 6 mares/group). In the follicle-ablation group, all follicles > or = 6 mm were ablated on Day 7, and every 2 days thereafter, newly emerging follicles were also ablated. Estradiol concentrations decreased (P < 0.01) similarly in the controls and the follicle-ablation group between Days 7 and 11 and by Day 15 began to increase in the controls and continued to decrease in the follicle-ablation group. Concentrations of progesterone were not affected by follicle ablation, but diameter of the corpus luteum was greater (P < 0.05) by Day 21 in the follicle-ablation group; these results indicated that the follicles were involved in morphologic luteolysis, but not in functional luteolysis. Concentrations of LH were higher (P < 0.05) on Days 15 and 16 in the follicle-ablation group than in the controls, indicating an initial negative effect of follicles on LH. Immunoreactive inhibin and estradiol decreased (P < 0.0001) and FSH and LH increased (P < 0.05) within 1 or 2 days after ovariectomy; these changes occurred more slowly in the follicle-ablation group. The maximum value for an FSH surge in each control mare was below the lower 95% confidence limit in the ovariectomy group. Maximum concentration for the periovulatory LH surge in the controls was not different from the mean maximum LH concentrations in the ovariectomy group. Our interpretation is that the gonadotropin surges resulted from changes in the magnitude of the negative effects of ovarian hormones on the positive effects of extraovarian control. There was no indication of a positive ovarian effect on either FSH or LH.  相似文献   

5.
The preovulatory gonadotropin surge in the sheep was recently characterized by a divergent pattern of LH beta and FSH beta mRNAs immediately preceding this event. It is not clear whether this pattern is due to estradiol (E2), inhibin or other effectors. In this study, to determine if E2 may be involved in the divergent beta mRNA patterns seen during the surge, gonadotropin surges were induced in anestrous ewes (An) by E2 (An + E2) and several parameters were then measured. These included the amounts of alpha, LH beta, and FSH beta mRNAs, as assessed by solution hybridization assays, plus pituitary and serum gonadotropin concentrations. The values were compared with those observed in control, An ewes, to assess the effect of E2. The E2 treatment resulted in LH and FSH surges that appeared to be similar to the normal surges seen during the breeding season. Concomitantly, the E2 treatment lowered pituitary concentrations of FSH (P less than 0.05), while LH amounts did not change. Although the effect of E2 on gonadotropin subunit mRNA amounts varied depending upon the individual subunit, the changes that were observed paralleled changes reported during the preovulatory surge of the cycle. Specifically, alpha mRNA amounts increased significantly (P less than 0.001) while FSH beta mRNA amounts fell dramatically (P less than 0.001). Moreover, LH beta mRNA amounts were slightly increased, although not significantly by E2. These results demonstrate that E2 effects changes in the amounts of the gonadotropin subunit mRNAs during an induced gonadotropin surge in An ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The objectives were to determine the effects of (i) time during the first FSH increase of the estrous cycle (time-course study) and (ii) exogenous steroid treatment (steroid feedback study) on the relationship between circulating serum gonadotropins, and the proportions of pituitary cells immunoreactive for gonadotropins and steroid receptors during the estrous cycle in heifers. Pituitaries were collected from heifers (n=40) slaughtered at 13h (n=8), 30h (n=24) and 66h (n=8) after estrous onset, corresponding to before, during and after the first FSH increase of the estrous cycle. Heifers slaughtered during the FSH increase (at 30h) either received no treatment (n=8), or were treated (n=16) with estradiol benzoate and/or progesterone before slaughter. During the time-course study, the proportion of pituitary cells immunoreactive for FSH increased (P<0.05) during the first transient FSH increase reflecting serum concentrations. The proportion of pituitary cells immunoreactive for LH was unaltered, a reflection of serum LH concentrations. The proportion of estrogen receptors (ER)-alpha, but not ER-beta, was decreased (P<0.05) at 30h compared with at either 13 or 66h. During the steroid feedback study, exogenous progesterone with or without estradiol suppressed (P<0.05) the proportions of pituitary cells immunoreactive for gonadotropins, serum FSH concentrations and LH pulse frequency. Steroid treatment did not alter the proportion of pituitary cells positive for estrogen receptors (alpha and beta). While progesterone receptors (PR) were not detected in the anterior pituitary by immunohistochemistry during the early estrous cycle or in response to steroid treatment, quantitative real-time PCR revealed that mRNA for progesterone receptors was expressed at very low levels. The expression of pituitary PR mRNA was decreased (P<0.05) at 30 and 66h compared with 13h, and was suppressed (P<0.05) following steroid treatments. Alterations in pituitary steroid receptors are implicated in the differential regulation of gonadotropin secretion during the first transient FSH rise, but not in response to exogenous steroids. The time-course study and steroid feedback responses support the hypothesis that LH pulse frequency is tightly linked to regulation of GnRH pulse frequency. Serum FSH is regulated by its own synthesis, as reflected by pituitary FSH content and perhaps by alterations in pituitary sensitivity to circulating steroids by changes in steroid receptor content.  相似文献   

7.
The patterns of LH and FSH secretion were measured in 4 experimental groups of Finnish Landrace and Scottish Blackface ewes: long-term (18 months) ovariectomized ewes (Group 1), long-term ovariectomized ewes with an oestradiol implant, which has been shown to produce peripheral levels of approximately 5 pg/ml (Group 2), long-term ovariectomized ewes with an oestradiol implant for 18 months which was subsequently removed (surgery on Day 0) (Group 3) and short-term ovariectomized ewes (surgery on Day 0) (Group 4). LH and FSH concentrations were monitored in all groups at approximately weekly intervals, before and after Day 0. Finnish Landrace ewes in Groups 1, 2 and 3 had significantly higher mean FSH concentrations than did Scottish Blackface ewes (P less than 0.01). FSH and LH concentrations increased significantly in Groups 3 and 4, but values in Group 4 were significantly lower (P less than 0.01) than those in Group 1 ewes even up to 30 days after ovariectomy. In Group 3, LH concentrations increased to levels similar to those in Group 1. The pattern of LH release was, however, significantly different, with a lower LH pulse frequency (P less than 0.05), but higher pulse amplitude (P less than 0.05). This difference was maintained at least until 28 days after implant removal. We suggest that removal of negative feedback by ovariectomy demonstrates an underlying breed difference in the pattern of FSH secretion and that ovarian factors other than oestradiol are also involved in the negative-feedback control of hypothalamic/pituitary gland function. Furthermore, negative-feedback effects can be maintained for long periods, at least 28 days, after ovariectomy or oestradiol implant removal.  相似文献   

8.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

9.
Marked differences were observed between the clearance profiles of immunoreactive plasma gonadotropins in gonadectomized and intact male bullfrogs (Rana catesbeiana). The disappearance patterns of endogenously secreted follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from plasma of intact animals following chronic (1-4 days) infusion with gonadotropin releasing hormone (GnRH) showed multiple components, but the initial few half-lives were relatively short (less than 1 h) and about 90% of both gonadotropins were cleared from the plasma within 6 h. Hypophysectomy had no effect on gonadotropin clearance rates following the termination of GnRH infusion. Clearance profiles of exogenous gonadotropins after chronic (6 h) infusion of bullfrog pituitary extract were similar to those observed after GnRH infusion. Gonadectomized frogs also cleared these infused pituitary gonadotropins at the same rate as intact animals, confirming that gonadectomy did not impair peripheral clearance mechanisms. Relatively rapid clearance rates were also observed for endogenous FSH and LH in normal untreated frogs. By comparison, the disappearance rates of FSH and LH from plasma of six long-term gonadectomized males following hypophysectomy were extremely slow: first half-lives for FSH and LH were 25.6 h and 17.2 h, respectively, and subsequent half-lives were even longer. Several weeks were required to clear fully the FSH and LH from the circulation in these males. Thus, a significant change in the physicochemical form of the circulating gonadotropins after gonadectomy in the male bullfrog is postulated; the corresponding changes in clearance rates were considerably greater than have been observed in any other species.  相似文献   

10.
In a previous study, 10-day estradiol implant treatment truncated the FSH peaks that precede follicular waves in sheep, but subsequent ovine FSH (oFSH) injection reinitiated wave emergence. The present study's objectives were to examine the effects of a 20-day estradiol and progesterone treatment on FSH peaks, follicle waves, and responsiveness to oFSH injection. Also, different estradiol doses were given to see whether a model that differentially suppressed FSH peaks, LH pulses, or basal gonadotropin secretion could be produced in order to study effects of these changes on follicular dynamics. Mean estradiol concentrations were 11.8 +/- 0.4 pg/ml, FSH peaks were truncated, wave emergence was halted, and the number of small follicles (2-3 mm in diameter) was reduced (P < 0.05) in cyclic ewes given estradiol and progesterone implants (experiment 1). On Day 15 of treatment, oFSH injection failed to induce wave emergence. With three different estradiol implant sizes (experiment 2), estradiol concentrations were 5.2, 19.0, 27.5, and 34.8 (+/-4.6) pg/ml in control and treated ewes, respectively. All estradiol treatments truncated FSH peaks, except those that created the highest estradiol concentrations. Experiment 2-treated ewes had significantly reduced mean and basal FSH concentrations and LH pulse amplitude and frequency. We concluded that 20-day estradiol treatment truncated FSH peaks, blocking wave emergence, and reduced the small-follicle pool, rendering the ovary unresponsive to oFSH injection in terms of wave emergence. Varying the steroid treatment created differential FSH peak regulation compared with other gonadotropin secretory parameters. This provides a useful model for future studies of the endocrine regulation of ovine antral follicular dynamics.  相似文献   

11.
The gonadotrope cells of the ovine anterior pituitary were insulated from hypothalamic inputs by imposing an immunologic barrier generated by active immunization of ovariectomized ewes against gonadotropin-releasing hormone (GnRH) conjugated to keyhole limpet hemocyanin (KLH) through a p-aminophenylacetic acid bridge. All GnRH-KLH animals immunized developed titers of anti-GnRH that exceeded 1:5000. The antisera were specific for GnRH and cross-reacted with GnRH agonists modified in position 10 to an extent that was less than 0.01%. Ewes actively immunized against GnRH-KLH displayed levels of basal and GnRH agonist-induced gonadotropin secretion that were markedly lower (p less than 0.05) than comparable parameters in ewes actively immunized against KLH. In contrast, basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion were not compromised by active immunization. Immunization against the GnRH-KLH conjugate, but not KLH alone, prevented expression of the positive feedback response to exogenous estradiol (E2). Pituitary stores of immunoactive luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were significantly (p less than 0.001) reduced in ewes immunized against GnRH-KLH but stores of PRL were not affected by such immunization. Further, the biopotency of the residual LH stores in tissue of animals from the anti-GnRH group was significantly (p less than 0.05) lower than LH biopotency in anti-KLH animals. Serum levels of LH in anti-GnRH ewes were restored by circhoral administration of a GnRH agonist that did not cross-react with the antisera generated. Pulsatile delivery of GnRH agonist in anti-GnRH ewes significantly (p less than 0.05) elevated serum LH within 48 h and reestablished LH levels comparable to anti-KLH ewes within 6 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Whether estradiol targets a subpopulation of gonadotrope cells was investigated in this study. Ovariectomized ewes (OVX) or OVX ewes immunized against GnRH and treated with hourly pulses of GnRH analogue (OVX-IMG) were killed at 6, 12, 16, and 24 h after administration of 50 microg of 17beta-estradiol (E(2)). Control ewes received no E(2) treatment. In OVX or OVX-IMG ewes killed 6 h after E(2) injection, a decrease in gonadotropin plasma levels was observed compared with non-E(2)-treated ewes. In contrast, a surge in gonadotropin plasma concentrations occurred in ewes killed 16 h after injection. The percentage of total immunoreactive gonadotrope cells among the pituitary cells was lower in E(2)-treated ewes compared with nontreated animals. The proportion of monohormonal LH cells was constant throughout the experiment, except at the surge peak, where it was enhanced. In the OVX ewes, the proportion of bihormonal LH/FSH cells was lower in the E(2)-treated ewes compared to the nontreated ewes (P: < 0.001), with a more pronounced decrease 16 h after E(2) injection. A slight increase occurred 12 h after E(2) injection compared with 6 h after injection (P: < 0.05). A similar pattern was observed in the OVX-IMG ewes, except at 12 h after E(2) injection, when no increase occurred. In both OVX and OVX-IMG ewes, injection of E(2) decreased FSHbeta mRNA expression but did not alter the relative levels of LHbeta mRNA. These data suggest that the negative feedback of E(2) on LH and FSH secretion mainly targets the bihormonal cells and occurs, at least in part, directly at the pituitary level. During the gonadotropin surge, the sustained FSH release from the bihormonal cells would induce a switch from bihormonal cells to monohormonal LH cells by depleting these cells of FSH.  相似文献   

13.
FSH levels begin to rise 3-5 days after male Siberian hamsters are transferred from inhibitory short photoperiods to stimulatory long photoperiods. In contrast, LH levels do not increase for several weeks. This differential pattern of FSH and LH secretion represents one of the most profound in vivo examples of differential regulation of the gonadotropins. The present study was undertaken to characterize the molecular mechanisms controlling differential FSH and LH synthesis and secretion in photostimulated Siberian hamsters. First, we cloned species-specific cDNAs for the three gonadotropin subunits: the common alpha subunit and the unique FSHbeta and LHbeta subunits. All three subunits share high nucleotide and predicted amino acid sequence identity with the orthologous cDNAs from rats. We then used these new molecular probes to examine the gonadotropin subunit mRNA levels from pituitaries of short-day male hamsters transferred to long days for 2, 5, 7, 10, 15, or 20 days. Short-day (SD) and long-day (LD) controls remained in short and long days, respectively, from the time of weaning. We measured serum FSH and LH levels by RIA. FSHbeta, LHbeta, and alpha subunit mRNA levels were measured from individual pituitaries using a microlysate ribonuclease protection assay. Serum FSH and pituitary FSHbeta mRNA levels changed similarly following long-day transfer. Both were significantly elevated after five long days (2.3- and 3.6-fold, respectively; P < 0.02) and declined thereafter, but they remained above SD control values through 20 long days. Alpha subunit mRNA levels also increased significantly relative to SD control values (maximum 2-fold increase after seven long days; P < 0.03), although to a lesser extent than FSHbeta. Neither serum LH nor pituitary LHbeta mRNA levels changed significantly following long-day transfer. The results indicate that long-day-associated increases in serum FSH levels in Siberian hamsters reflect an underlying increase in pituitary FSHbeta and alpha subunit mRNA accumulation.  相似文献   

14.
Pituitary content of luteinizing hormone (LH) and mRNAs for LH beta-subunit (LH beta), alpha-subunit, prolactin, and growth hormone were measured in ewes on Days 50 and 140 of gestation and on Days 2, 13, 22, and 35 postpartum. Content of LH in dissociated anterior pituitary cells declined (P less than 0.05) between Days 50 and 140 of gestation and remained low at 2 days postpartum. By 22 days postpartum, pituitary concentrations of LH were comparable to concentrations in normally cycling ewes. During gestation concentrations of mRNA for LH beta and alpha-subunit paralleled changes in cellular content of LH, reaching minimal levels on Day 140. By Day 2 postpartum, pituitary concentrations of mRNAs for LH beta and alpha-subunit began to increase; they reached maximum levels by Day 13 postpartum. There appeared to be a gradual linear increase in mRNA for prolactin through gestation and the postpartum period. No changes in mRNA for growth hormone were noted during the prepartum or postpartum periods. These data suggest that the decline in pituitary concentrations of LH during gestation is due to a decrease in cellular mRNA for LH beta and alpha-subunit. The increase in mRNA for LH beta and alpha-subunit appears to precede an increase in cellular content of LH in the postpartum ewe by several days.  相似文献   

15.
This report provides evidence that an increment in serum gonadotropin levels occurs at puberty in the sheep and that this reflects the critical hormonal event culminating in first ovulation in this species. Blood samples were collected from 6 female lambs at 4-h intervals for a period of approximately 2 mo around the expected time of puberty (32 wk of age) until behavioral estrus was observed and ovulation was verified by assay of serum progesterone. Patterns of circulating LH, FSH, progesterone, and estradiol concentrations were characterized during the peripubertal period for each lamb. A rise in serum levels of both LH and FSH began approximately 7-10 days before the first preovulatory surge of gonadotropins. Although the increase in gonadotropin levels occurred gradually over several days, serum estradiol levels rose only during the final 40-60 h prior to the preovulatory surge of gonadotropin. Serum progesterone profiles revealed, however, that normal (14-16-day) luteal phases were induced in only 2 of 6 females as a result of the first surge. In four lambs, a short luteal phase of 2.5 days' duration occurred, which was followed by another estradiol rise and a preovulatory surge that then resulted in a full luteal phase of 14 days' duration. These data demonstrate clearly that the precipitating event at puberty in the female sheep is an increase in circulating gonadotropin levels and that the estradiol secreted from the newly stimulated follicle provides the signal for the first preovulatory surge.  相似文献   

16.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To test whether the F gene-specific differences in the plasma concentrations of FSH and LH are due to differences in the pituitary responsiveness to exogenous GnRH, ovariectomized Booroola ewes with hypothalamic-pituitary disconnection (HPD-ovx) were treated with GnRH (250 ng i.v.) once every 2 h for up to 5 weeks. In Exp. 1, jugular venous blood was collected once weekly from 13 FF and 14 ++ HPD-ovx ewes for 6 weeks before GnRH treatment and every 2nd, 3rd or 6th day for 5 weeks during treatment. In Exp. 2, jugular venous blood was collected from another 8 FF and 7 ++ HPD-ovx ewes at 5- or 10-min intervals over 4 GnRH pulses (250 ng i.v. once every 2 h) on 3 separate occasions after the animals had been subjected to the GnRH pulse regimen for approximately 7 days beforehand. Also in Exp. 2, the animals were extensively sampled around a larger (10 micrograms) i.v. injection of GnRH and the pituitary FSH and LH contents assessed after the animals had been re-exposed to the once every 2 h GnRH (250 ng i.v.) pulse regimen for several days following the larger GnRH bolus. In Exp. 3 the distributions of mean plasma concentrations of FSH and LH in individual GnRH-treated HPD-ovx ewes were compared with those in ovariectomized and ovary-intact FF and ++ ewes. During the 6 weeks before GnRH treatment (Exp. 1), the plasma concentrations of FSH (approximately 1 ng/ml) and LH (less than or equal to 0.8 ng/ml) were not different between the genotypes. After GnRH treatment both the mean FSH and LH concentrations increased significantly (P less than 0.01) above basal values after 2 days with F gene-specific differences being noted for FSH but not LH (FSH; FF greater than ++; P less than 0.05). Thereafter, the mean FSH but not LH concentrations increased at a faster rate in FF than in ++ ewes with the overall mean FSH concentrations between the genotypes being significantly different (P less than 0.05). In Exp. 2 considerable between-animal variation in the pulsatile pattern of FSH but not LH concentrations was seen in ewes of both genotypes during GnRH treatment. The overall mean FSH concentrations were higher in FF than in ++ ewes (P less than 0.05) and the mean FSH response to each GnRH pulse was significantly higher in FF than in ++ ewes (P less than 0.05).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Short-term feed restriction in prepubertal gilts suppresses episodic LH secretion in the absence of changes in body weight or composition. To assess non-gonadotropin-mediated effects of realimentation at the ovarian level, 52 gilts were assigned to six treatments after 7 days (Days 1-7) of maintenance feeding (approximately 30% ad libitum). Groups R12 and R9 were maintenance-fed Days 8-12 or Days 8-9, respectively; A12 and A9 were fed to appetite Days 8-12 or Days 8-9, respectively. Groups R9P and A9P were fed as groups R9 and A9 were but received 750 IU eCG at 1500 h on Day 8. Groups R12 and A12 were ovariectomized at 1500 h on Day 12, and all other groups were ovariectomized at 1500 h on Day 9. All gilts received oral progestogen (15 mg allyl trenbolone) from Day 1 to ovariectomy, to antagonize the usual increases in endogenous gonadotropins that follow realimentation. Blood samples were obtained at 10-min intervals during selected windows during the experiment. Ovarian follicles were analyzed for development and steroidogenesis, and plasma samples were analyzed by RIA to determine concentrations of LH, FSH, insulin, and insulin-like growth factor-1 (IGF-1). Allyl trenbolone abolished pulsatile LH secretion, and realimentation did not stimulate LH or FSH secretion, with the exception of FSH secretion on Day 8 in A9 gilts. Postprandial insulin concentrations on Day 9 were greater after feeding to appetite (A9, A9P, and A12) than after feed restriction (R9, R9P, and R12). Pre- and postprandial IGF-1 concentrations were higher in re-fed gilts on Day 9 (A9 and A12) and Day 12 (A12) than in feed-restricted gilts. Follicular diameter, fluid volume, and basal granulosa cell estradiol synthesis per follicle were greater in A12 gilts than in R12 gilts, although there was no difference between A9 and R9 gilts. There was no effect of realimentation on follicular fluid concentrations of estradiol or testosterone, or on androgen-driven granulosa cell estradiol synthesis. Treatment with eCG increased follicular diameter, fluid volume, basal and androgen-driven estradiol synthesis, and fluid estradiol concentrations without interaction with feeding level. In conclusion, in the absence of LH elevations, realimentation over 5 days exerts effects at the ovary, increasing follicular growth and estradiol synthesis. These effects may be mediated by insulin, IGF-1, or unmeasured growth factors and would be expected to synergize with increases in endogenous gonadotropin that follow realimentation.  相似文献   

19.
In several physiological paradigms, secretion of FSH and LH are not coordinately regulated. Because these hormones appear to be produced by a single cell type in the anterior pituitary gland, their discordant regulation must be related to differential intracellular responses to various stimuli. Estradiol-17beta (estradiol) has been shown to influence secretion of both FSH and LH and some of its effects are mediated directly on the gonadotrope. Changes in expression of intrapituitary factors such as activin and follistatin may mediate effects of estradiol and account for discordant patterns of FSH and LH. The aims of this study were 1) to determine if estradiol alters expression of genes encoding activin, follistatin, or both in ovine pituitary cells; and 2) to observe the effects of immunoneutralizing activin B in vitro on gonadotropin secretion. Pituitary cells from five ewes in the anestrous season were cultured for 24 h with estradiol (0.01 or 1.0 nM). Estradiol reduced basal secretion of FSH in a dose-dependent manner (P: < 0.001) and simultaneously increased basal secretion of LH (P: < 0.001). Decreased secretion of FSH in estradiol-treated cultures was accompanied by suppressed levels of FSHbeta subunit mRNA (P: < 0.001). Amounts of mRNA for activin beta(B) were reduced in a dose-dependent manner by estradiol (27% +/- 4.9% at 0.01 nM, P: < 0.02; and 46% +/- 3.9% at 1.0 nM, P: < 0.002). In contrast, mRNA for follistatin was not affected by treatment with estradiol. Treatment of pituitary cells with an antibody to activin B reduced secretion of FSH by 50% (P: < 0.01) without influencing secretion of LH. These data lead us to conclude that discordant secretion of gonadotropins can be induced by estradiol acting directly at the pituitary level. The inhibitory effect of estradiol on FSH secretion may be mediated indirectly through decreased pituitary expression of the activin gene.  相似文献   

20.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号