首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that catecholamine responsiveness in a variety of cells can be altered by inhibitors of RNA and protein synthesis. The neuroblastoma-glioma hybrid, NG108-CC15, which lacks catecholamine-stimulated accumulation of cyclic AMP, was investigated to determine if the responsiveness to prostaglandin E1 (PGE1) could be modified by inhibitors of protein synthesis. Cycloheximide in a time-dependent manner potentiated the ability of prostaglandin E1 to stimulate accumulation of intracellular cyclic AMP. However, the alpha-adrenergic inhibition of the prostaglandin response was not affected by cycloheximide. Withdrawal of norepinephrine following a long-term incubation resulted in a potentiation of subsequent PGE1-stimulated cyclic AMP accumulation. Cycloheximide enhanced this norepinephrine withdrawal effect. Our previous studies have shown that cholera toxin induces refractoriness to beta-adrenergic agonists in C6-2B rat astrocytoma cells and that cycloheximide blocked this action of cholera toxin. In an analogous manner cholera toxin caused refractoriness to subsequent prostaglandin-stimulated cyclic AMP production in NG108-CC15 cells, and cycloheximide reduced cholera toxin-induced prostaglandin refractoriness. Thus cycloheximide potentiates the prostaglandin stimulatory effect, has no effect on the ability of alpha-agonists to inhibit the prostaglandin response, increases the stimulatory effect of PGE1 after norepinephrine withdrawal, and reduces cholera toxin-induced PGE1 refractoriness. these observations suggest that PGE1-stimulated cyclic AMP accumulation in NG108-CC15 cells contains components which are regulated by de novo protein synthesis.  相似文献   

2.
NG108-15 neuroblastoma x glioma hybrid cells and S49 lymphoma cells exhibit an enhancement in adenylyl cyclase activity after chronic treatment with receptor agonists that acutely inhibit the enzyme. Using agonists that activate five distinct inhibitory receptors in NG108-15 cells, we have found that there is a correlation between the extent of acute inhibition of prostaglandin E1 (PGE1)-stimulated cAMP accumulation and efficacy for induction of enhanced PGE1 stimulation of cAMP accumulation after chronic treatment and withdrawal. Chronic treatment with dideoxyadenosine, which acutely inhibits adenylyl cyclase activity by a mechanism independent or cell surface receptors or pertussis toxin-sensitive G proteins, did not induce enhanced PGE1 stimulation of cAMP accumulation in NG108-15 cells or forskolin stimulation of cAMP accumulation in S49 cells. While control basal cAMP concentrations were acutely decreased by carbachol in NG108-15 cells and by somatostatin in S49 cells, when the cAMP concentrations were maintained above the control basal values with a phosphodiesterase inhibitor, chronic treatment with these inhibitory drugs nonetheless resulted in enhanced cAMP responses in both NG108-15 and S49 cells. These results provide evidence that the initial decrement in cAMP concentrations caused by inhibitory drug is not the requisite signal for inducing the subsequent sensitization of adenylyl cyclase in NG108-15 and S49 cells but that activation of a pertussis toxin-sensitive G protein is involved in the development of this important adaptation.  相似文献   

3.
The increase in hormone-stimulated cyclic AMP accumulation observed in a variety of intact cells after chronic pretreatment with drugs that inhibit adenylate cyclase activity has been attributed to an increase in adenylate cyclase activity following withdrawal of the inhibitory drug. In NG 108-15 mouse neuroblastoma X rat glioma hybrid cells (NG cells) chronically treated with the muscarinic cholinergic agonist carbachol, we have found a significant decrease in the apparent degradation rate constant for cyclic AMP, in addition to an increase in the prostaglandin E1 (PGE1)-stimulated cyclic AMP synthesis rate in intact cells. In carbachol-pretreated NG cells that were stimulated with a maximally effective dose of PGE1, and that accumulated steady-state cyclic AMP concentrations fourfold or more higher than in control cells, the apparent rate constant for degradation was about 53% lower than the value for control cells. In carbachol-pretreated cells stimulated with a submaximal dose of PGE1 to yield a steady-state cyclic AMP concentration comparable to control cells, the apparent rate constant was 31% lower than the value for control cells. In S49 mouse lymphoma cells (S49 cells) chronically treated with an analog of the inhibitory agonist somatostatin, the first-order rate constant for cyclic AMP degradation in intact cells following isoproterenol stimulation was 29% lower than the value for control cells. Despite these changes in the kinetics of cyclic AMP degradation in intact NG cells and S49 cells, there was either no change or a minimal change (less than 10%) in phosphodiesterase activities assayed in extracts of cells chronically exposed to inhibitory drugs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.  相似文献   

5.
Somatostatin inhibits both forskolin and (-) isoproterenol-stimulated cyclic AMP accumulation in AtT-20 cells. Pretreatment of these cells with pertussis toxin prevents somatostatin's inhibitory effects on cyclic AMP production. This pretreatment also enhances the cyclic AMP response to forskolin and (-) isoproterenol without affecting basal cyclic AMP levels. The blockade of somatostatin's inhibitory effect was dependent both on the time of preincubation and concentration of pertussis toxin used. The rise in forskolin-stimulated cyclic AMP formation following pertussis toxin treatment preceded the blockade of somatostatin's inhibitory actions. The results suggest that somatostatin acts through an inhibitory guanine nucleotide regulatory protein to affect adenylate cyclase activity.  相似文献   

6.
NG108-15 cells contain both the inhibitory and stimulatory guanyl nucleotide-binding regulatory proteins of the cyclase system. Choleragen activates cyclase directly by ADP-ribosylating the stimulatory guanyl nucleotide-binding protein; prostaglandin E1 does not further increase activity of cells treated with maximally effective concentrations of choleragen. Including pertussis toxin during incubation with this concentration of choleragen, however, further augments both cyclase activity and cAMP accumulation by intact cells. These observations suggest that the inhibitory guanyl nucleotide-binding protein exerts basal inhibition on catalytic activity which cannot be overcome by maximally effective concentrations of choleragen, stimulatory hormones, or both.  相似文献   

7.
Pretreatment of intact NG108-15 cells with pertussis toxin suppresses opioid inhibition of cyclic AMP accumulation mediated by the inhibitory guanine nucleotide-binding regulatory protein, Ni, which apparently also mediates the inhibitory nucleotide effects on opioid against binding. The toxin treatment had no effect on opioid agonist binding measured in NG108-15 cell membranes without sodium present. However, the toxin potentiated the inhibitory effect of sodium on agonist binding, leading to an agonist-specific reduction of opioid receptor affinity in the presence of sodium in the binding reaction. The potency of the stable GTP analog, GTP gamma S, to reduce agonist binding in the presence of sodium was little changed in membranes prepared from pertussis toxin-treated cells compared to control membranes, whereas the potency of the stable GDP analog, GDP beta S, was magnified. The data indicate that ADP-ribosylation of Ni by pertussis toxin potentiates sodium regulation of opioid agonist binding and that the communication between Ni and opioid receptors is not lost by the covalent modification of Ni.  相似文献   

8.
The effect of somatostatin and alpha 2-adrenergic agonists on cyclic AMP accumulation was examined in MDCK cells, grown in defined medium. These hormones inhibited vasopressin-induced cyclic AMP formation, without affecting either the basal or the glucagon- and prostaglandin E2-stimulated level. Pretreating the cells with pertussis toxin, or incubating them with MnCl2 at a low concentration reversed the effect of somatostatin and alpha 2-agonists. These results suggest that somatostatin and norepinephrine could selectively modulate the renal effect of vasopressin, via the inhibitory regulatory subunit (Ni) of adenylate cyclase.  相似文献   

9.
Carbamoylcholine (carbachol) has been shown to inhibit somatostatin release from gastric D-cells. We observed that this dose-dependent inhibitory effect was accompanied by decreases in cellular cyclic adenosine 3':5'-monophosphate (cAMP) production and increases in parameters of membrane inositol phospholipid turnover. However, after pretreatment of D-cells with pertussis toxin (200 ng/ml), carbachol paradoxically stimulated basal somatostatin release and potentiated the secretagogue action of forskolin. Pertussis toxin pretreatment blocked the ability of carbachol to decrease cAMP production but changes in inositol phospholipid turnover were unaffected. Atropine reversed all of the observed changes induced by carbachol. These data suggest that muscarinic cholinergic receptors mediate both stimulatory and inhibitory regulation of D-cells. The inhibitory effect may involve pertussis toxin-sensitive inhibitory guanine nucleotide binding proteins while the stimulatory effect may result from the consequences of membrane phosphoinositide turnover.  相似文献   

10.
Pretreatment of A-10 cells with pertussis toxin had no effect on [arginine]vasopressin-mediated inhibition of cyclic nucleotide accumulation. Pretreatment of the cells with the same concentration of pertussis toxin produced 90-95% inhibition of [32P]ADP ribosylation in membranes, suggesting that these cells possess pertussis-toxin substrate and that the toxin enters the cells to reach its site of action. The functional integrity of the pertussis-toxin substrate in these cells is confirmed by the observation that in these cell membranes increasing concentrations of GTP inhibited basal, forskolin- and NaF-stimulated adenylate cyclase activities, and this inhibition was abolished when the cells were pretreated with pertussis toxin. In addition, thrombin-mediated inhibition of isoprenaline-stimulated cyclic AMP accumulation was also inhibited by pertussis-toxin pretreatment of the cells. These data suggest that, unlike thrombin, [arginine]vasopressin-induced inhibitory effects on cyclic nucleotide accumulation in smooth-muscle cells are not mediated by pertussis-toxin substrate.  相似文献   

11.
Neurobiological actions of ethanol have been linked to perturbations in cyclic AMP (cAMP)-dependent signaling processes. Chronic ethanol exposure leads to desensitization of cAMP production in response to physiological ligands (heterologous desensitization). Ethanol-induced alterations in neuronal expression of G proteins G(s) and G(i) have been invoked as a cause of heterologous desensitization. However, effects of ethanol on G protein expression vary considerably among different experimental protocols, various brain regions and diverse neuronal cell types. Dynamic palmitoylation of G protein alpha subunits is critical for membrane localization and protein-protein interactions, and represents a regulatory feature of G protein function. We studied the effect of ethanol on G alpha(s) palmitoylation. In NG108-15 rat neuroblastoma x glioma hybrid cells, acute exposure to pharmacologically relevant concentrations of ethanol (25-100 mm) inhibited basal and prostaglandin E1-stimulated incorporation of palmitate into G alpha(s). Exposure of NG108-15 cells to ethanol for 72 h induced a shift in G alpha(s) to its non-palmitoylated state, coincident with an inhibition of prostaglandin E1-induced cAMP production. Both parameters were restored following 24 h of ethanol withdrawal. Chronic ethanol exposure also induced the depalmitoylation of G alpha(s) in human embryonic kidney (HEK)293 cells that overexpress wild-type G alpha(s) and caused heterologous desensitization of adenylyl cyclase. By contrast, HEK293 cells that express a non-palmitoylated mutant of G alpha(s) were insensitive to heterologous desensitization after chronic ethanol exposure. In summary, the findings identify a novel effect of ethanol on post-translational lipid modification of G alpha(s), and represent a mechanism by which ethanol might affect adenylyl cyclase activity.  相似文献   

12.
The choroid plexus is a major site of CSF production. When primary cultures of bovine choroid plexus epithelial cells were exposed to 1 micrograms/ml cholera toxin, a 50-fold increase of intracellular cyclic AMP was found 1 h later. Exposure of cells to 10(-5) M isoproterenol, 10(-4) M prostaglandin E1, 10(-5) M histamine, and 10(-5) M serotonin caused increases of intracellular cyclic concentrations of 100-, 50-, 20-, and 4-fold, respectively. From 5 to 15 min were required for these maximal responses to occur. Many other molecules including prolactin, vasopressin, and corticotropin did not alter cellular cyclic AMP levels. The accumulation of cyclic AMP could be inhibited by specific antagonists: propranolol inhibited the isoproterenol-mediated stimulation while diphenhydramine and metiamide inhibited the histamine response. In addition, diphenhydramine inhibited serotonin-dependent cyclic AMP accumulation. Combinations of isoproterenol, prostaglandin E1, histamine, and serotonin elicited additive responses as measured by cyclic AMP accumulation with one exception, i.e., serotonin inhibited the histamine response. Our findings suggest that distinct receptor sites on choroid plexus epithelia exist for isoproterenol, prostaglandin E1, and histamine. Efflux of cyclic AMP into the extracellular medium was found to be a function of the intracellular cyclic AMP levels over a wide range of concentrations. Our studies provide direct evidence for hormonal regulation of cyclic AMP metabolism in epithelial cells of the choroid plexus.  相似文献   

13.
These studies demonstrate a novel mechanism for the coupling of the muscarinic receptor to phospholipase C activity in embryonic chick atrial cells. In monolayer cultures of atrial cells from hearts of embryonic chicks at 14 days in ovo, carbamylcholine stimulated the sequential appearance of InsP3, InsP2 and InsP1 with an EC50 (concn. causing 50% of maximal stimulation) of 30 microM. In the presence of 15 mM-Li, a 5 min exposure to carbamylcholine (0.1 mM) increased InsP3 levels to a maximum of 47 +/- 12% over basal, InsP2 to 108 +/- 13% over basal and InsP1 to 42 +/- 5% over basal. This effect was blocked by 5 microM-atropine. Incubation of these cells with pertussis toxin (15 h; 0.5 ng/ml) inhibited carbamylcholine-stimulated InsP3, InsP2 and InsP1 formation by 42 +/- 7%, 30 +/- 3% and 48 +/- 7% respectively. The IC50 (concn. causing 50% inhibition) for pertussis toxin inhibition of all three inositol phosphates was 0.01 ng/ml, with a half-time of 6 h at 0.5 ng/ml. This partial sensitivity to pertussis toxin was not due to incomplete ADP-ribosylation of the guanine-nucleotide-binding protein (G-protein), since autoradiography of polyacrylamide gels of cell homogenates incubated with [32P]NAD+ in the presence of pertussis toxin demonstrated that incubation of cells with 0.5 ng of pertussis toxin/ml for 15 h resulted in complete ADP-ribosylation of pertussis toxin substrates by endogenous NAD+. In cells permeabilized with saponin (10 micrograms/ml), 0.1 mM-GTP[S] (guanosine 5'-[gamma-thio]triphosphate) stimulated InsP1 by 102 +/- 15% (mean +/- S.E.M., n = 4), InsP2 by 421 +/- 67% and InsP3 by 124 +/- 33% above basal. Incubation of cells for 15 h with 0.5 ng of pertussis toxin/ml decreased GTP[S]-stimulated InsP1 production in saponin-treated cells by 30 +/- 10% (n = 3), InsP2 production by 45 +/- 7% (n = 4) and InsP3 production by 49 +/- 6% (n = 4). These data demonstrate that in embryonic chick atrial cells at least two independent G-proteins, a pertussis toxin-sensitive G-protein and a pertussis toxin-insensitive G-protein, play a role in coupling muscarinic agonist binding to phospholipase C activation and to inositol phosphate production.  相似文献   

14.
Incubation of rat renal mesangial cells with angiotensin II (0.1 microM) resulted in transient breakdown of phosphatidylinositol 4,5-bisphosphate, rapid generation of diacylglycerol and phosphatidic acid, increased 45Ca2+ influx, increased intracellular [Ca2+] as measured by quin 2, and increased prostaglandin E2 synthesis. All of these processes were markedly inhibited time- and dose-dependently by prior exposure of cells to pertussis toxin. In contrast, the effects of the ionophore A23187 on 45Ca2+ influx and prostaglandin E2 synthesis were not altered by the exposure of the cells to pertussis toxin. The action of the toxin was not associated with alterations in cellular concentrations of cyclic AMP. Incubation of membrane fraction of mesangial cells with pertussis toxin resulted in ADP-ribosylation of Mr-42,000 protein. From all these results, it is likely that a G protein is involved in receptor-mediated signal transduction in renal mesangial cells.  相似文献   

15.
In pregnant-rat myometrium (day 21 of gestation), isoprenaline-induced cyclic AMP accumulation, resulting from receptor-mediated activation of adenylate cyclase, was negatively regulated by prostaglandins [PGE2, PGF2 alpha; EC50 (concn. giving 50% of maximal response) = 2 nM] and by the muscarinic agonist carbachol (EC50 = 2 microM). PG-induced inhibition was prevented by pertussis-toxin treatment, supporting the idea that it was mediated by the inhibitory G-protein Gi through the inhibitory pathway of the adenylate cyclase. Both isoprenaline-induced stimulation and PG-evoked inhibition of cyclic AMP were insensitive to Ca2+ depletion. By contrast, carbachol-evoked attenuation of cyclic AMP accumulation was dependent on Ca2+ and was insensitive to pertussis toxin. The inhibitory effect of carbachol was mimicked by ionomycin. Indirect evidence was thus provided for the enhancement of cyclic AMP degradation by a Ca2(+)-dependent phosphodiesterase activity in the muscarinic-mediated effect. The attenuation of cyclic AMP elicited by carbachol coincided with carbachol-stimulated inositol phosphate (InsP3, InsP2 and InsP) generation, which displayed an almost identical EC50 (3 microM) and was similarly unaffected by pertussis toxin. Both carbachol effects were reproduced by oxotremorine, whereas pilocarpine (a partial muscarinic agonist) failed to induce any decrease in cyclic AMP accumulation and concurrently was unable to stimulate the generation of inositol phosphates. These data support our proposal for a carbachol-mediated enhancement of a Ca2(+)-dependent phosphodiesterase activity, compatible with the rises in Ca2+ associated with muscarinic-induced increased generation of inositol phosphates. They further illustrate that a cross-talk between the two major transmembrane signalling systems contributed to an ultimate decrease in cyclic AMP in the pregnant-rat myometrium near term.  相似文献   

16.
T Emoto  K Kasai  M Hiraiwa  S Shimoda 《Life sciences》1988,42(22):2249-2257
In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E1 or E2 (PGE1 or PGE2) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10(-9) M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.  相似文献   

17.
The effects of neuropeptide Y (NPY) on pineal gland cyclic AMP (cAMP) accumulation were investigated using dispersed pinealocytes from rats. NPY inhibited the intracellular cAMP accumulation stimulated by isoproterenol and norepinephrine in a dose-dependent manner during a 10-min incubation of pinealocytes. NPY (1 x 10(-7) M) also inhibited vasoactive intestinal peptide (VIP)- and cholera toxin-induced cAMP accumulation. The inhibitory effect of NPY on isoproterenol-induced cAMP accumulation was completely abolished by a 5-h pretreatment of pinealocytes with 1 microgram/ml of pertussis toxin (PT). These results suggest that NPY participates in modulation of cAMP production in the rat pineal gland through PT-sensitive G protein. Yohimbine, an alpha 2-adrenergic antagonist, blocked NPY inhibition of isoproterenol-stimulated cAMP accumulation. On the other hand, the alpha 2-adrenergic agonist clonidine by itself did not affect cAMP accumulation stimulated by isoproterenol but significantly potentiated NPY action. The present study demonstrates that NPY inhibits beta-adrenergic or VIPergic stimulation of the pineal gland cAMP accumulation. The inhibitory effect of NPY is mediated through PT-sensitive G protein. Our results also suggest that NPY exerts its action to affect alpha 2-adrenoceptor function.  相似文献   

18.
In enzymatically dispersed enriched rat parietal cells we studied the effect of pertussis toxin on prostaglandin E2 (PGE2)- or somatostatin-induced inhibition of H(+)-production. Parietal cells were incubated in parallel in the absence (control cells) and presence of pertussis toxin (250 ng/ml; 4 h). [14C]Aminopyrine accumulation by both pertussis toxin-treated and control cells was used as an indirect measure of H(+)-production after stimulation with either histamine, forskolin or dibutyryl adenosine 3',5'-cyclic monophosphate (dbcAMP) alone and in the presence of PGE2 (10(-9)-10(-7) M) or somatostatin (10(-9)-10(-6) M). PGE2 inhibited histamine- and forskolin-stimulated [14C]aminopyrine accumulation but failed to alter the response to dbcAMP. Somatostatin was less effective and less potent than PGE2 in inhibiting stimulation by histamine or forskolin and reduced the response to dbcAMP. Pertussis toxin completely reversed inhibition by both PGE2 and somatostatin on histamine- and forskolin-stimulated H(+)-production but failed to affect inhibition by somatostatin of the response to dbcAMP. After incubation of crude control cell membranes with [32P]NAD+, pertussis toxin catalysed the incorporation of [32P]adenosine diphosphate (ADP)-ribose into a membrane protein of molecular weight of 41,000, the known molecular weight of the inhibitory subunit of adenylate cyclase (Gi alpha). Pertussis toxin treatment of parietal cells prior to the preparation of crude membranes almost completely prevented subsequent pertussis toxin-catalysed [32P]ADP ribosylation of the 41,000 molecular weight protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

20.
It has been shown recently that catecholestrogens are produced by cultured porcine granulosa and thecal cells, and that they influence porcine granulosa cell steroidogenesis in a similar manner to estradiol-17 beta (E2). The present studies were performed to determine if catecholestrogens also play a role in the regulation of porcine thecal cell steroidogenesis and to compare their actions to those of E2. Thecal cells were obtained from prepubertal gilts and cultured in a serum-free medium for 48 h. Thecal cell androstenedione production under basal and luteinizing hormone (LH)-stimulated conditions was significantly inhibited by adding E2 or catecholestrogens to the culture medium. Treatment of basal and LH-stimulated cultures with increasing concentrations of E2 or catecholestrogens (0.1-10 micrograms/ml) caused a dose-and time-dependent inhibition of androstenedione production. The inhibitory effect of the catecholestrogens, but not of E2, was enhanced when the cultures contained the catechol-O-methyl transferase inhibitor, U-0521. Studies to determine the mechanism(s) of action of the catecholestrogens showed that E2 and catecholestrogen actions are exerted at a site(s) distal to cyclic adenosine 3'5' monophosphate (cyclic AMP) generation, because neither agent affected the basal or LH-stimulated accumulation of extracellular cyclic AMP, while causing a significant inhibition of androstenedione production. E2 or catecholestrogen treatment also inhibited androstenedione production stimulated by prostaglandin E2 and dibutyryl cyclic AMP. In addition, both E2 and catecholestrogen treatment significantly decreased basal and LH-stimulated 17 alpha-hydroxyprogesterone production, while significantly increasing pregnenolone production. Progesterone production in the presence of E2 or catecholestrogens showed small but statistically insignificant increases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号