首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective and safe treatments of amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), are needed to prevent mortality in captive programs, reduce the risk of disease spread, and better manage the disease in threatened wild populations. Bd is susceptible to a range of antifungal agents and low levels of heat (>30 degrees C) when tested in vitro, but there are few proven methods for clearing adult amphibians of Bd, and acute drug toxicity is a problem for tadpoles and juveniles. In postmetamorphic animals, heat (32 and 37 degrees C) is the only well-supported treatment. Antifungal drugs have not undergone rigorous testing--for example, trials were small or lacked controls and thorough post-treatment testing. In addition, pharmacokinetic studies have not been performed so there are no data on blood or tissue levels of antifungal agents. However, itraconazole baths have been widely used in amphibian rescue and conservation programs and anecdotal evidence suggests that they are effective for adults and subadults. In an experimental trial with tadpoles, a low dose of itraconazole cleared Bd but may have been associated with cutaneous depigmentation. Fluconazole appeared safe for tadpoles as it did not cause mortality, and future attempts to find an effective dose may be worthwhile. Palliative restoration of blood sodium and potassium levels by administration of electrolyte solutions appears useful in frogs with clinical chytridiomycosis. Randomised and blinded clinical trials, which include basic pharmacological studies, are urgently needed to provide comparable evidence for the safety and efficacy of treatment options which are likely to vary with amphibian species. Priorities are to validate and optimize the use of heat and itraconazole regimes.  相似文献   

2.
Effective treatment methods to eliminate infection with Batrachochytrium dendrobatidis (Bd) are required for development of sustainable captive survival assurance populations of amphibians and to reduce the risk of introducing Bd to new locations as part of amphibian trade or reintroduction programs. Treatment with itraconazole baths at 100 mg l-1 is commonly used in captive amphibians, but side effects are observed in some amphibian species and life stages. Naturally occurring outbreaks of chytridiomycosis in Wyoming toads Anaxyrus baxteri and White's tree frogs Litoria caerulea were treated with lower-dose itraconazole baths (e.g. 50 mg l-1 for White's tree frogs) and followed post-treatment with serial Taqman PCR testing to confirm elimination of Bd infection. Post-treatment PCR tests were consistently negative for the presence of Bd and treatment was deemed successful. Although this was not a controlled clinical trial, results suggest that lower doses of itraconazole may be effective for treatment of chytridiomycosis with resulting cost savings to amphibian conservation programs and a potential for a reduction in dose-related side effects from itraconazole treatment. Prospective clinical trials of alternative itraconazole treatment protocols are encouraged.  相似文献   

3.
Infectious pathogens can disrupt the microbiome in addition to directly affecting the host. Impacts of disease may be dependent on the ability of the microbiome to recover from such disturbance, yet remarkably little is known about microbiome recovery after disease, particularly in nonhuman animals. We assessed the resilience of the amphibian skin microbial community after disturbance by the pathogen, Batrachochytrium dendrobatidis (Bd). Skin microbial communities of laboratory-reared mountain yellow-legged frogs were tracked through three experimental phases: prior to Bd infection, after Bd infection (disturbance), and after clearing Bd infection (recovery period). Bd infection disturbed microbiome composition and altered the relative abundances of several dominant bacterial taxa. After Bd infection, frogs were treated with an antifungal drug that cleared Bd infection, but this did not lead to recovery of microbiome composition (measured as Unifrac distance) or relative abundances of dominant bacterial groups. These results indicate that Bd infection can lead to an alternate stable state in the microbiome of sensitive amphibians, or that microbiome recovery is extremely slow—in either case resilience is low. Furthermore, antifungal treatment and clearance of Bd infection had the additional effect of reducing microbial community variability, which we hypothesize results from similarity across frogs in the taxa that colonize community vacancies resulting from the removal of Bd. Our results indicate that the skin microbiota of mountain yellow-legged frogs has low resilience following Bd-induced disturbance and is further altered by the process of clearing Bd infection, which may have implications for the conservation of this endangered amphibian.Subject terms: Microbial ecology, Community ecology  相似文献   

4.
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines worldwide. In vitro laboratory studies and those done on wild populations indicate that Bd grows best at cool temperatures between 17 and 25 degrees C. In the present study, we tested whether moderately elevating the ambient temperature to 30 degrees C could be an effective treatment for frogs infected with Bd. We acquired 35 bullfrogs Rana catesbeiana from breeding facilities and 36 northern cricket frogs Acris crepitans from the wild and acclimated them to either 23 or 26 degrees C for 1 mo. Following the acclimation period, frogs were tested for the presence of Bd using qPCR TaqMan assays. The 12 R. catesbeiana and 16 A. crepitans that tested positive for Bd were subjected to 30 degrees C for 10 consecutive days before returning frogs to their starting temperatures. Post-treatment testing revealed that 27 of the 28 frogs that had tested positive were no longer infected with Bd; only a single A. crepitans remained infected following treatment. This result indicates that elevating ambient temperature to a moderate 30 degrees C can be effective as a treatment for Bd infection in captive amphibians, and suggests that heat may be a superior alternative to antifungal drugs.  相似文献   

5.
Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.  相似文献   

6.
Chytridiomycosis, an infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), poses an imminent conservation threat. The global spread of Bd has led to mass mortality events in many amphibian species, resulting in at least 90 species'' extinctions to date. Exposure to Bd metabolites (i.e. non-infectious antigenic chemicals released by Bd) partially protects frogs during subsequent challenges with live Bd, suggesting its use as a prophylactic treatment and potential vaccine. However, we do not know whether Bd metabolite exposure protects against strains beyond the one used for treatment. To address this knowledge gap, we conducted a 3 × 2 experiment where we exposed adult Cuban treefrogs, Osteopilus septentrionalis, to one of three treatments (Bd metabolites from California-isolated strain JEL-270, Panamá-isolated strain JEL-419, or an artificial spring water control) and then challenged individuals with live Bd from either strain. We found that exposure to Bd metabolites from the California-isolated strain significantly reduced Bd loads of frogs challenged with the live Panamá-isolated strain, but no other treatments were found to confer protective effects. These findings demonstrate asymmetric cross-protection of a Bd metabolite prophylaxis and suggest that work investigating multiple, diverse strains is urgently needed.  相似文献   

7.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is likely the cause of numerous recent amphibian population declines worldwide. While the fungus is generally highly pathogenic to amphibians, hosts express a wide range of responses to infection, probably due to variation among hosts and environmental conditions, but possibly also due to variation in Bd. We investigated variation in Bd by exposing standardized host groups to 2 Bd strains in a uniform environment. All exposed frogs became infected, but subsequent lethal and sub-lethal (weight loss) responses differed among groups. These results demonstrate variation in Bd and suggest variation occurs even at small geographical scales, likely explaining some of the variation in host responses. With lower than expected mortality among infected frogs, we continued our study opportunistically to determine whether or not frogs could recover from chytridiomycosis. Using heat, we cleared infection from half of the surviving frogs, leaving the other half infected, then continued to monitor mortality and weight. Mortality ceased among disinfected frogs but continued among infected frogs. Disinfected frogs gained weight significantly more than infected frogs, to the point of becoming indistinguishable from controls, demonstrating that at least some of the effects of sub-lethal chytridiomycosis on hosts can be non-permanent and reversible.  相似文献   

8.
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) is contributing to amphibian declines worldwide. Temperature plays an important role in both pathogen growth and host immune function, but little is known about seasonal dynamics of Bd infection in north temperate regions. Our objective was to increase understanding of Bd disease ecology by investigating patterns of Bd infection of Columbia spotted frogs Rana luteiventris across seasons, age classes, and sexes in north Idaho, USA. We collected skin swabs from 223 R. luteiventris in spring, summer, and fall 2009 at 7 ponds in the Palouse region and quantified Bd zoospores for each sample using quantitative PCR. Across seasons, Bd prevalence of adults was higher in summer than in spring or fall, suggesting that individuals may be clearing low-level infections over the summer. Among age classes, all but one late stage tadpole (Gosner stage 43-45) tested negative for Bd. Conversely, 100% of metamorphs tested positive for Bd and had the highest Bd loads of all age classes, suggesting they may be the most vulnerable age class. Adult R. luteiventris had high infection prevalence (> 60%) in all seasons, indicating that Bd infection is maintained within populations and that adults likely serve as disease reservoirs across seasons. Among adults, we also found weak evidence for females having higher infection prevalence than males. Further laboratory and field studies are needed to determine whether there are individual and population impacts from Bd on R. luteiventris and other amphibians in north Idaho.  相似文献   

9.
While global amphibian declines are associated with the spread of Batrachochytrium dendrobatidis (Bd), undetected concurrent co-infection by other pathogens may be little recognized threats to amphibians. Emerging viruses in the genus Ranavirus (Rv) also cause die-offs of amphibians and other ectotherms, but the extent of their distribution globally, or how co-infections with Bd impact amphibians are poorly understood. We provide the first report of Bd and Rv co-infection in South America, and the first report of Rv infections in the amphibian biodiversity hotspot of the Peruvian Andes, where Bd is associated with extinctions. Using these data, we tested the hypothesis that Bd or Rv parasites facilitate co-infection, as assessed by parasite abundance or infection intensity within individual adult frogs. Co-infection occurred in 30% of stream-dwelling frogs; 65% were infected by Bd and 40% by Rv. Among terrestrial, direct-developing Pristimantis frogs 40% were infected by Bd, 35% by Rv, and 20% co-infected. In Telmatobius frogs harvested for the live-trade 49% were co-infected, 92% were infected by Bd, and 53% by Rv. Median Bd and Rv loads were similar in both wild (Bd = 101.2 Ze, Rv = 102.3 viral copies) and harvested frogs (Bd = 103.1 Ze, Rv = 102.7 viral copies). While neither parasite abundance nor infection intensity were associated with co-infection patterns in adults, these data did not include the most susceptible larval and metamorphic life stages. These findings suggest Rv distribution is global and that co-infection among these parasites may be common. These results raise conservation concerns, but greater testing is necessary to determine if parasite interactions increase amphibian vulnerability to secondary infections across differing life stages, and constitute a previously undetected threat to declining populations. Greater surveillance of parasite interactions may increase our capacity to contain and mitigate the impacts of these and other wildlife diseases.  相似文献   

10.
The emerging amphibian disease chytridiomycosis, which is caused by the fungal pathogen (Batrachochytrium dendrobatidis, Bd), has caused mass mortalities of native amphibian populations globally. There have been no previous studies on the relationships between stress hormones in free-living amphibians and Bd infections. In this study, we measured urinary corticosterone metabolite concentrations and Bd infections within free-living populations of male Stony Creek frog (Litoria wilcoxii) in Queensland, Australia. Prevalence of Bd zoospores from frog skin swabs was quantified using a real-time quantitative PCR technique. A urinary corticosterone enzyme-immunoassay (EIA) was validated using adrenocorticotropic hormone (ACTH) challenge. Urinary corticosterone concentrations of male frogs increased within 1-2 days after ACTH challenge and returned to baseline levels within 3 days post-ACTH injection. None of the frogs showed any rise in urinary corticosterone after saline injections. Individual male frogs showed either low or high baseline corticosterone concentrations. Male frogs identified as positive for Bd infection had significantly higher baseline urinary corticosterone concentrations in comparison to Bd negative male frogs. Urinary corticosterone EIA provides a reliable indication of stress in this frog species and this non-invasive physiological tool can be used to further assess the dynamics of Bd infections and physiological stress responses in other native amphibians.  相似文献   

11.
The purpose of this study was to establish a method for eradicating a chytrid fungus (Batrachochytrium dendrobatidis; Bd) from the Japanese giant salamander Andrias japonicus. The emerging agent (Bd) has a high rate of detection in this endangered amphibian species, which is designated as a special natural monument in Japan. Four Japanese giant salamanders with Bd confirmed by PCR assay were bathed in 0.01% itraconazole for 5 min d-1 over 10 successive days. PCR assays were conducted prior to treatment, on Days 5 and 10 of treatment, and on Days 7 and 14 post-treatment. By treatment Day 5, all individuals tested negative for Bd and remained negative until the end of the experiment. No side effects associated with itraconazole were observed. The present method appears to be a safe and effective approach for Bd eradication and may contribute to reducing the threat and spread of Bd among endangered amphibians. Notably, this study represents the first reported Bd eradication experiment involving Japanese giant salamanders.  相似文献   

12.
Chytridiomycosis, an amphibian skin disease caused by the emerging fungal pathogen Batrachochytrium dendrobatidis, has been implicated in catastrophic global amphibian declines. The result is an alarming decrease in amphibian diversity that is a great concern for the scientific community. Clinical trials testing potential antifungal drugs are needed to identify alternative treatments for amphibians infected with this pathogen. In this study, we quantified the MICs of chloramphenicol (800 μg/ml), amphotericin B (0.8 to 1.6 μg/ml), and itraconazole (Sporanox) (20 ng/ml) against B. dendrobatidis. Both chloramphenicol and amphotericin B significantly reduced B. dendrobatidis infection in naturally infected southern leopard frogs (Rana [Lithobates] sphenocephala), although neither drug was capable of complete fungal clearance. Long-term exposure of R. sphenocephala to these drugs did not inhibit antimicrobial peptide (AMP) synthesis, indicating that neither drug is detrimental to this important innate skin defense. However, we observed that chloramphenicol, but not amphotericin B or itraconazole, inhibited the growth of multiple R. sphenocephala skin bacterial isolates in vitro at concentrations below the MIC against B. dendrobatidis. These results indicate that treatment with chloramphenicol might dramatically alter the protective natural skin microbiome when used as an antifungal agent. This study represents the first examination of the effects of alternative antifungal drug treatments on amphibian innate skin defenses, a crucial step to validating these treatments for practical applications.  相似文献   

13.
Chytridiomycosis, an infectious disease of amphibians, is caused by the fungus Batrachochytrium dendrobatidis (Bd) and has been linked to declining amphibian populations worldwide. The susceptibility of amphibians to chytridiomycosis-induced population declines is potentially influenced by many factors, including environmental characteristics, differences among host species and the growth of the pathogen itself. We investigated the effects of elevation and breeding habitat on Bd prevalence and individual infection intensity (zoospore loads) in 3 anuran assemblages of the Atlantic Coastal Forest of Brazil. Bd infection intensity was strongly influenced by elevation and breeding habitat, but we found no evidence of an interaction between those 2 variables in explaining the number of zoospores sampled from individual frogs. In contrast, Bd infection odds were predicted by elevation and by an interaction between elevation and breeding habitat, such that frogs had a higher probability of Bd infection in lotic habitats at low elevations. Our results indicate that Bd persists across a wide variety of habitats and elevations in the Atlantic Coastal Forest. Prevalence and infection intensity of Bd are highest at high elevations where overall environmental conditions for Bd are most favorable. In addition, at low elevations amphibian host habitat choice is also an important determinant of infection. Our study highlights the need to investigate interacting variables of host ecology and the environment simultaneously.  相似文献   

14.
Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.  相似文献   

15.
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.  相似文献   

16.
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).  相似文献   

17.
Chytridiomycosis, caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease responsible for amphibian declines on several continents. In laboratory conditions, optimal temperatures for Bd growth and survivorship are between 17 and 25 degrees C. We investigated the effect of different storage temperatures, both in field and laboratory conditions, on detection of Bd from swabs stored for 7 d. We sampled 52 wild Litoria wilcoxii males for Bd by simultaneously running 2 cotton swabs along the skin of the frog. One group of swabs was stored in a freezer within 2 h of sampling and the other was kept in a car in an exposed environment for 7 d before being stored in the freezer. In the laboratory experiment, swabs were inoculated with zoospores of Bd and underwent one of 4 treatments: immediate DNA extraction, or storage at 27, 38 or 45 degrees C for 7 d prior to DNA extraction. Swabs from all treatments were analyzed by quantitative (real-time) PCR test. Though prevalence of Bd did not differ significantly between swabs that were frozen and those that remained in a car for 7 d (19.2 vs. 17.3%, respectively), the number of Bd zoospores detected on car swabs taken from infected frogs was, on average, 67% less than that detected on the corresponding frozen swab. In the laboratory experiment, the number of zoospore equivalents varied significantly with treatment (F(3,35) = 4.769, p = 0.007), indicating that there was reduced recovery of Bd DNA from swabs stored at higher temperatures compared with those stored at lower temperatures or processed immediately. We conclude that failure to store swabs in cool conditions can result in a significant reduction in the amount of Bd DNA detected using the PCR assay. Our results have important implications for researchers conducting field sampling of amphibians for Bd.  相似文献   

18.
1. Anthropogenic effects have propelled us into what many have described as the sixth mass extinction, and amphibians are among the most affected groups. The causes of global amphibian population declines and extinctions are varied, complex and context‐dependent and may involve multiple stressors. However, experimental studies examining multiple factors contributing to amphibian population declines are rare. 2. Using outdoor mesocosms containing zooplankton, phytoplankton, periphyton and tadpoles, we conducted a 2 × 2 × 3 factorial experiment that examined the separate and combined effects of an insecticide and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on three different assemblages of larval pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). 3. Larval amphibian growth and development were affected by carbaryl and the amphibian assemblage treatment, but only minimally by Bd. Carbaryl delayed metamorphosis in both amphibian species and increased the growth rate of P. regilla. Carbaryl also reduced cladoceran abundance, which, in turn, had positive effects on phytoplankton abundance but no effect on periphyton biomass. Substituting 20 intraspecific competitors with 20 interspecific competitors decreased the larval period but not the growth rate of P. regilla. In contrast, substituting 20 intraspecific competitors with 20 interspecific competitors had no effect on R. cascadae. Results of real‐time quantitative polymerase chain reaction (qPCR) analysis confirmed infection of Bd‐exposed animals, but exposure to Bd had no effects on either species in univariate analyses, although it had significant or nearly significant effects in several multivariate analyses. In short, we found no interactive effects among the treatments on amphibian growth and development. 4. We encourage future research on the interactive effects of pesticides and pathogens on amphibian communities.  相似文献   

19.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is lethal to many species of amphibians worldwide. Many studies have investigated the epidemiology of chytridiomycosis in amphibian populations, but few have considered possible host-pathogen coevolution. More specifically, investigations focused on the evolution of Bd, and the link with Bd virulence, are needed. Such studies, which may be important for conservation management of amphibians, depend on access to Bd isolates. Here we provide a summary of known Bd isolates that have been collected and archived in various locations around the world. Of 257 Bd isolates, we found that 53% originate from ranids in the United States. In many cases, detailed information on isolate origin is unavailable, and it is unknown how many isolates are cryo-archived. We suggest the creation of a centralized database of isolate information, and we urge researchers and managers to isolate and archive Bd to facilitate future research on chytridiomycosis.  相似文献   

20.
Harper EB  Semlitsch RD 《Oecologia》2007,153(4):879-889
Populations of species with complex life cycles have the potential to be regulated at multiple life history stages. However, research tends to focus on single stage density-dependence, which can lead to inaccurate conclusions about population regulation and subsequently hinder conservation efforts. In amphibians, many studies have demonstrated strong effects of larval density and have often assumed that populations are regulated at this life history stage. However, studies examining density regulation in the terrestrial stages are rare, and the functional relationships between terrestrial density and vital rates in amphibians are unknown. We determined the effects of population density on survival, growth and reproductive development in the terrestrial stage of two amphibians by raising juvenile wood frogs (Rana sylvatica) and American toads (Bufo americanus) at six densities in terrestrial enclosures. Density had strong negative effects on survival, growth and reproductive development in both species. We fitted a priori recruitment functions to describe the relationship between initial density and the density of survivors after one year, and determined the functional relationship between initial density and mass after one year. Animals raised at the lowest densities experienced growth and survival rates that were over twice as great as those raised at the highest density. All female wood frogs in the lowest density treatment showed signs of reproductive development, compared to only 6% in the highest density treatment. Female American toads reached minimum reproductive size only at low densities, and male wood frogs and American toads reached maturity only in the three lowest density treatments. Our results demonstrate that in the complex life cycle of amphibians, density in the terrestrial stage can reduce growth, survival and reproductive development and may play an important role in amphibian population regulation. We discuss the implications of these results for population regulation in complex life cycles and for amphibian conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号