首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Monkey embryonic stem (ES) cells have characteristics that are similar to human ES cells, and might be useful as a substitute model for preclinical research. When embryoid bodies (EBs) formed from monkey ES cells were cultured, expression of many hepatocyte-related genes including cytochrome P450 (Cyp) 3a and Cyp7a1 was observed. Hepatocytes were immunocytochemically observed using antibodies against albumin (ALB), cytokeratin-8/18, and α1-antitrypsin in the developing EBs. The in vitro differentiation potential of monkey ES cells into the hepatic lineage prompted us to examine the transplantability of monkey EB cells. As an initial approach to assess the repopulation potential, we transplanted EB cells into immunodeficient urokinase-type plasminogen activator transgenic mice that undergo liver failure. After transplantation, the hepatocyte colonies expressing monkey ALB were observed in the mouse liver. Fluorescence in-situ hybridization revealed that the repopulating hepatocytes arise from cell fusion between transplanted monkey EB cells and recipient mouse hepatocytes. In contrast, neither cell fusion nor repopulation of hepatocytes was observed in the recipient liver after undifferentiated ES cell transplantation. These results indicate that the differentiated cells in developing monkey EBs, but not contaminating ES cells, generate functional hepatocytes by cell fusion with recipient mouse hepatocytes, and repopulate injured mouse liver.  相似文献   

3.
Hepatocyte transplantation as a substitute strategy of orthotopic liver transplantation is being studied for treating end-stage liver diseases. Several technical hurdles must be overcome in order to achieve the therapeutic liver repopulation, such as the problem of insufficient expansion of the transplanted hepatocytes in recipient livers. In this study, we analyzed the application of FoxM1, a cell-cycle regulator, to enhance the proliferation capacity of hepatocytes. The non-viral sleeping beauty (SB) transposon vector carrying FoxM1 gene was constructed for delivering FoxM1 into the hepatocytes. The proliferation capacities of hepatocytes with FoxM1 expression were examined both in vivo and in vitro. Results indicated that the hepatocytes with FoxM1 expression had a higher proliferation rate than wild-type (WT) hepatocytes in vitro. In comparison with WT hepatocytes, the hepatocytes with FoxM1 expression had an enhanced level of liver repopulation in the recipient livers at both sub-acute injury (fumaryl acetoacetate hydrolase (Fah)–/– mice model) and acute injury (2/3 partial hepatectomy mice model). Importantly, there was no increased risk of tumorigenicity with FoxM1 expression in recipients even after serial transplantation. In conclusion, expression of FoxM1 in hepatocytes enhanced the capacity of liver repopulation without inducing tumorigenesis. FoxM1 gene delivered by non-viral SB vector into hepatocytes may be a viable approach to promote therapeutic repopulation after hepatocyte transplantation.  相似文献   

4.
The dynamics of cell renewal in the normal adult liver remains an unresolved issue. We investigate the possible contribution of a common biliary precursor cell pool to hepatocyte turnover in the chimeric long-term repopulated rat liver. The retrorsine (RS)-based model of massive liver repopulation was used. Animals not expressing the CD26 marker (CD26-) were injected with RS, followed by transplantation of 2 million syngeneic hepatocytes isolated from a normal CD26-expressing donor. Extensive (80-90 %) replacement of resident parenchymal cells was observed at 1 year post-transplantation and persisted at 2 years, as expected. A panel of specific markers, including cytokeratin 7, OV6, EpCAM, claudin 7 and α-fetoprotein, was employed to locate the in situ putative progenitor and/or biliary epithelial cells in the stably repopulated liver. No overlap was observed between any of these markers and the CD26 tag identifying transplanted cells. Exposure to RS was not inhibitory to the putative progenitor and/or biliary epithelial cells, nor did we observe any evidence of cell fusion between these cells and the transplanted cell population. Given the long-term (>2 years) stability of the donor cell phenotype in this model of liver repopulation, the present findings suggest that hepatocyte turnover in the repopulated liver is fuelled by a cell lineage distinct from that of the biliary epithelium and relies largely on the differentiated parenchymal cell population. These results support the solid biological foundation of liver repopulation strategies based on the transplantation of isolated hepatocytes.  相似文献   

5.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   

6.
This report describes the evolution of hepatocytes isolated from 21-day fetuses and transplanted into spleens of Nagase analbuminemic rats which have negligible serum albumin levels due to a mutation affecting albumin mRNA processing. Albumin and alpha-fetoprotein expression, in addition to other parameters related to cellular proliferation status (thymidine kinase and proliferating cell nuclear antigen expression) were studied as indicative of the behavior and evolution of the cells. In recipient rats, only a few clusters of hepatocytes could be observed in the red pulp of the spleen 24 h after transplantation. The fetal hepatocytes migrated to the liver and could be seen in portal branches immediately after transplantation. Fifteen days later, albumin mRNA was detected in recipient livers and was expressed throughout the entire 3-month study. Alpha-fetoprotein was not detected. Cell proliferation was not relevant, although 3 months after transplantation, the proliferation rates appeared to show a tendency to increase. These data demonstrate that fetal hepatocytes transplanted into spleen migrate to liver, settle there and acquire an adult phenotype free of malignant transformation. Our study is a first step towards the thorough understanding of fetal hepatocyte transplantation. The next steps will involve in-depth studies of the possibilities of genetic manipulation to achieve a high degree of repopulation/expression, employing the least possible number of donor cells, and of how the cells reach the liver parenchyma, overcoming the endothelial barrier.  相似文献   

7.
利用人脐血单个核细胞重建急性肝损伤小鼠肝组织,探索建立人-小鼠嵌合肝模型方法。15只SCID小鼠,以四氯化碳(CCL4)制备急性肝损伤模型,24h后行2/3肝切除,然后分为三个实验组细胞移植组(7只)、阴性对照组(3只)及空白对照组(5只);将人脐血单个核细胞悬液注入细胞移植组小鼠脾脏内,阴性对照组小鼠脾脏内注入等量磷酸盐缓冲液(PBS),空白对照组不注射细胞悬液和PBS。术后7d、14d及21d取小鼠肝组织观察病理变化、检测人白蛋白(ALB)及细胞角蛋白19(CK19),同时检测小鼠血清及肝组织匀浆中人ALB含量。全部小鼠表现出急性肝损伤组织学特征;细胞移植组小鼠术后7d、14d、21d肝组织内均见大量人ALB及CK19阳性表达细胞,血清及肝组织匀浆可检测出人ALB;阴性对照组小鼠肝组织未见人ALB及CK19阳性表达,血清及肝组织匀浆中未检测出人ALB。人脐血单个核细胞在部分肝切除的急性肝损伤小鼠肝组织内可大量分化为人肝细胞及胆管细胞,在建立模型方面已取得关键突破。  相似文献   

8.
Grompe M 《Human cell》1999,12(4):171-180
Orthotopic liver transplantation is the treatment of choice for many inherited and acquired liver diseases. Unfortunately, the supply of donor organs is limiting and therefore many patients cannot benefit from this therapy. In contrast, hepatocyte suspensions can be isolated from a single donor liver can be transplanted into several hosts, and this procedure may help overcome the shortage in donor livers. In classic hepatocyte transplantation, however, only 1% of the liver mass or less can be replaced by donor cells. Recently though, we have used a mouse model of hereditary tyrosinemia to show that > 90% of host hepatocytes can be replaced by a small number of transplanted donor cells in a process we term "therapeutic liver repopulation". This phenomenon is analogous to repopulation of the hematopoietic system after bone marrow transplantation. Liver repopulation occurs when transplanted cells have a growth advantage in the setting of damage to recipient liver cells. Here we will review the current knowledge of this process and discuss the hopeful implications for treatment of liver diseases.  相似文献   

9.
The success of hepatocyte transplantation has been limited by the low efficiency of transplanted cell integration into liver parenchyma. Human fetal hepatic progenitor cells (hepatoblasts) engraft more effectively than adult hepatocytes in mouse livers. However, the signals required for their integration are not yet fully understood. We investigated the role of HGF on the migration and invasive ability of human hepatic progenitors in vitro and in vivo.Hepatoblasts were isolated from the livers of human fetuses between 10 and 12 weeks of gestation. Their invasive ability was assessed in the presence or absence of HGF. These cells were also transplanted into immunodeficient mice and analyzed by immunohistochemistry.In contrast to TNF-alpha, HGF increased the motogenesis and invasiveness of hepatoblasts, but not of human adult hepatocytes, via phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. The invasive ability of human hepatoblasts correlated with the expression and secretion of matrix metalloproteinases (MMPs). Hepatoblasts stimulated with HGF prior transplantation into newborn mice migrated from the portal area into the hepatic parenchyma.Conclusions: In contrast to adult hepatocytes, hepatoblasts display invasive ability that can be modulated by HGF in vitro and in vivo.  相似文献   

10.
11.
Liver-directed gene therapy is appropriate for many conditions. Recent work established that liver repopulation with transplanted cells can be effective in treating genetic disorders. Although hepatocytes express therapeutic genes with considerable efficiency, correction of genetic disorders is constrained by limitations in permanent gene transfer into hepatocytes and repopulation of the liver with transplanted cells. Adenoviral vectors are highly efficient for hepatic gene transfer but the onset of deleterious host immune responses against adenoviral vectors, along with clearance of transduced hepatocytes have caused problems. Nonetheless, recent work concerning engraftment and proliferation of transplanted hepatocytes in the liver has provided significant new information, which should refocus interest in hepatocyte-based therapies. Moreover, hepatocyte transplantation systems offer creative tools for defining critical mechanisms in gene regulation and survival of transduced cells.  相似文献   

12.
Engelbreth-Holm-Swarm (EHS) gel has been reported to maintain the mature hepatocyte phenotypes in primary cultured hepatocytes. We investigated the effect of EHS gel on the differentiation of fetal liver cells, which contain stem/progenitor cells. The isolated fetal liver cells cultured on EHS gel formed a spherical shape and increased liver-specific gene expressions compared with cells cultured on collagen. The hepatic progenitor cells that were transplanted subcutaneously to BALB/c nude mice could survive and express hepatocyte marker alpha-fetoprotein when the cells were suspended with EHS gel. These findings demonstrate that EHS gel supports cytodifferentiation from immature progenitor cells to hepatocytes and maintain its differentiated phenotypes in vitro and in vivo.  相似文献   

13.
14.
Background aimsPreviously, we have shown that human decidua-derived mesenchymal stromal cells (DMSC) are mesenchymal stromal cells (MSC) with a clonal differentiation capacity for the three embryonic layers. The endodermal capacity of DMSC was revealed by differentiation into pulmonary cells. In this study, we examined the hepatic differentiation of DMSC.MethodsDMSC were cultured in hepatic differentiation media or co-cultured with murine liver homogenate and analyzed with phenotypic, molecular and functional tests.Results and ConclusionsDMSC in hepatic differentiation media changed their fibroblast morphology to a hepatocyte-like morphology and later formed a 3-dimensional (3-D) structure or hepatosphere. Moreover, the hepatocyte-like cells and the hepatospheres expressed liver-specific markers such as synthesis of albumin (ALB), hepatocyte growth factor receptor (HGFR), α-fetoprotein (AFP) and cytokeratin-18 (CK-18), and exhibited hepatic functions including glycogen storage capacity and indocyanine green (ICG) uptake/secretion. Human DMSC co-cultured with murine liver tissue homogenate in a non-contact in vitro system showed hepatic differentiation, as evidenced by expression of AFP and ALB genes. The switch in the expression of these two genes resembled liver development. Indeed, the decrease in AFP and increase in ALB expression throughout the co-culture were consistent with the expression pattern observed during normal liver organogenesis in the embryo. Interestingly, AFP and ALB expression was significantly higher when DMSC were co-cultured with injured liver tissue, indicating that DMSC respond differently under normal and pathologic micro-environmental conditions. In conclusion, DMSC-derived hepatospheres and DMSC co-cultured with liver homogenate could be suitable in vitro models for toxicologic, developmental and pre-clinical hepatic regeneration studies.  相似文献   

15.
Cell transplantation into hepatic sinusoids, which is necessary for liver repopulation, could cause hepatic ischemia. To examine the effects of cell transplantation on host hepatocytes, we transplanted Fisher 344 rat hepatocytes into syngeneic dipeptidyl peptidase IV-deficient rats. Within 24 h of cell transplantation, areas of ischemic necrosis, along with transient disruption of gap junctions, appeared in the liver. Moreover, host hepatocytes expressed gamma-glutamyl transpeptidase (GGT) extensively, which was observed even 2 years after cell transplantation. GGT expression was not associated with alpha-fetoprotein activation, which is present in progenitor cells. Increased GGT expression was apparent after transplantation of nonparenchymal cells and latex beads but not after injection of saline, fragmented hepatocytes, hepatocyte growth factor, or turpentine. Some host hepatocytes exhibited apoptosis, as well as DNA synthesis, between 24 and 48 h after cell transplantation. Changes in gap junctions, GGT expression, DNA synthesis, and apoptosis after cell transplantation were prevented by vasodilators. The findings indicated the onset of ischemic liver injury after cell transplantation. These hepatic perturbations must be considered when transplanted cells are utilized as reporters for biological studies.  相似文献   

16.
Background aimsCirculating monocytes have been exploited as an important progenitor cell resource for hepatocytes in vitro and are instrumental in the removal of fibrosis. We investigated the significance of monocytes in peripheral blood stem cells (PBSC) for the treatment of liver cirrhosis.MethodsRat CD14+ monocytes in PBSC were mobilized with granulocyte-colony-stimulating factor (G-CSF) and harvested by magnetic cell sorting (MACS). Female rats with carbon tetrachloride (CCl4)-induced liver cirrhosis were injected CM-DiI-labeled monocytes, CD14? cells (1 × 107 cells/rat) or saline via the portal vein.ResultsRat CD14+ and CD11b+ monocytes in PBSC were partly positive for CD34, CD45, CD44, Oct3/4 and Sox2, suggesting monocytes with progenitor capacity. Compared with CD14? cell-infused and saline-injected rats, rats undergoing monocyte transplantation showed a gradually increased serum albumin level and decreased portal vein pressure, resulting in a significantly improved survival rate. Meanwhile, monocyte transplantation apparently attenuated liver fibrosis by analysis for fibronectin, α2-(1)-procollagen, α-smooth muscle aorta (SMA) and transforming growth factor (TGF)-β. Transplanted monocytes mainly clustered in periportal areas of liver, in which 1.8% cells expressed hepatocyte marker albumin and CK18. The expression level of hepatocyte growth factor (HGF), TGF-α, extracellular matrix (EGF) and vascular endothelial growth factor (VEGF) increased, while monocyte transplantation enhanced hepatocyte proliferation. On the other hand, the activities and expression of matrix metalloproteinases (MMP) increased while tissue inhibitor of metalloproteinase (TIMP)-1 expression significantly reduced in monocyte-transplanted livers. Some transplanted monocytes expressed MMP-9 and -13.ConclusionsThe data suggest that CD14+ monocytes in PBSC contribute to hepatocyte regeneration and extracellular matrix (ECM) remodeling in rat liver cirrhosis much more than CD14? cells, and might offer a therapeutic alternative for patients with liver cirrhosis.  相似文献   

17.

Background and Aims

Preparative hepatic irradiation (HIR), together with mitotic stimulation of hepatocytes, permits extensive hepatic repopulation by transplanted hepatocytes in rats and mice. However, whole liver HIR is associated with radiation-induced liver disease (RILD), which limits its potential therapeutic application. In clinical experience, restricting HIR to a fraction of the liver reduces the susceptibility to RILD. Here we test the hypothesis that repopulation of selected liver lobes by regional HIR should be sufficient to correct some inherited metabolic disorders.

Methods

Hepatocytes (107) isolated from wildtype F344 rats or Wistar-RHA rats were engrafted into the livers of congeneic dipeptidylpeptidase IV deficient (DPPIV) rats or uridinediphosphoglucuronateglucuronosyltransferase-1A1-deficient jaundiced Gunn rats respectively by intrasplenic injection 24 hr after HIR (50 Gy) targeted to the median lobe, or median plus left liver lobes. An adenovector expressing hepatocyte growth factor (1011 particles) was injected intravenously 24 hr after transplantation.

Results

Three months after hepatocyte transplantation in DPPIV rats, 30–60% of the recipient hepatocytes were replaced by donor cells in the irradiated lobe, but not in the nonirradiated lobes. In Gunn rats receiving median lobe HIR, serum bilirubin declined from pretreatment levels of 5.17±0.78 mg/dl to 0.96±0.30 mg/dl in 8 weeks and remained at this level throughout the 16 week observation period. A similar effect was observed in the group, receiving median plus left lobe irradiation.

Conclusions

As little as 20% repopulation of 30% of the liver volume was sufficient to correct hyperbilirubinemia in Gunn rats, highlighting the potential of regiospecific HIR in hepatocyte transplantation-based therapy of inherited metabolic liver diseases.  相似文献   

18.
Therapeutic potential of hepatocyte transplantation   总被引:11,自引:0,他引:11  
Liver repopulation with transplanted cells offers unique opportunities for treating a variety of diseases and for studies of fundamental mechanisms in cell biology. Our understanding of the basis of liver repopulation has come from studies of transplanted cells in animal models. A variety of studies established that transplanted hepatocytes as well as stem/progenitor cells survive, engraft, and function in the liver. Transplanted cells survive life-long, although cells do not proliferate in the normal liver. On the other hand, the liver is repopulated extensively when diseases or other injuries afflict native hepatocytes but spare transplanted cells. The identification of ways to repopulate the liver with transplanted cells has greatly reinvigorated the field of liver cell therapy. The confluence of insights in stem/progenitor cells, transplantation immunology, cryobiology, and liver repopulation in specific models of human diseases indicates that the field of liver cell therapy will begin to reap the promised fruit in the near future.  相似文献   

19.
Multipotent mesenchymal stromal cells (MSC) are currently investigated clinically as cellular therapy for a variety of diseases. Differentiation of MSC toward endodermal lineages, including hepatocytes and their therapeutic effect on fibrosis has been described but remains controversial. Recent evidence attributed a fibrotic potential to MSC. As differentiation potential might be dependent of donor age, we studied MSC derived from adult and pediatric human bone marrow and their potential to differentiate into hepatocytes or myofibroblasts in vitro and in vivo. Following characterization, expanded adult and pediatric MSC were co-cultured with a human hepatoma cell line, Huh-7, in a hepatogenic differentiation medium containing Hepatocyte growth factor, Fibroblast growth factor 4 and oncostatin M. In vivo, MSC were transplanted into spleen or liver of NOD/SCID mice undergoing partial hepatectomy and retrorsine treatment. Expression of mesenchymal and hepatic markers was analyzed by RT-PCR, Western blot and immunohistochemistry. In vitro, adult and pediatric MSC expressed characteristic surface antigens of MSC. Expansion capacity of pediatric MSC was significantly higher when compared to adult MSC. In co-culture with Huh-7 cells in hepatogenic differentiation medium, albumin expression was more frequently detected in pediatric MSC (5/8 experiments) when compared to adult MSC (2/10 experiments). However, in such condition pediatric MSC expressed alpha smooth muscle more strongly than adult MSC. Stable engraftment in the liver was not achieved after intrasplenic injection of pediatric or adult MSC. After intrahepatic injection, MSC permanently remained in liver tissue, kept a mesenchymal morphology and expressed vimentin and alpha smooth muscle actin, but no hepatic markers. Further, MSC localization merges with collagen deposition in transplanted liver and no difference was observed using adult or pediatric MSC. In conclusion, when transplanted into an injured or regenerating liver, MSC differentiated into myofibroblasts with development of fibrous tissue, regardless of donor age. These results indicate that MSC in certain circumstances might be harmful due to their fibrogenic potential and this should be considered before potential use of MSC for cell therapy.  相似文献   

20.
MethodsHuman hepatocyte microbeads (HMBs) were prepared using sterile GMP grade materials. We determined physical stability, cell viability, and hepatocyte metabolic function of HMBs using different polymerisation times and cell densities. The immune activation of peripheral blood mononuclear cells (PBMCs) after co-culture with HMBs was studied. Rats with ALF induced by galactosamine were transplanted intraperitoneally with rat hepatocyte microbeads (RMBs) produced using a similar optimised protocol. Survival rate and biochemical profiles were determined. Retrieved microbeads were evaluated for morphology and functionality.ResultsThe optimised HMBs were of uniform size (583.5±3.3 µm) and mechanically stable using 15 min polymerisation time compared to 10 min and 20 min (p<0.001). 3D confocal microscopy images demonstrated that hepatocytes with similar cell viability were evenly distributed within HMBs. Cell density of 3.5×106 cells/ml provided the highest viability. HMBs incubated in human ascitic fluid showed better cell viability and function than controls. There was no significant activation of PBMCs co-cultured with empty or hepatocyte microbeads, compared to PBMCs alone. Intraperitoneal transplantation of RMBs was safe and significantly improved the severity of liver damage compared to control groups (empty microbeads and medium alone; p<0.01). Retrieved RMBs were intact and free of immune cell adherence and contained viable hepatocytes with preserved function.ConclusionAn optimised protocol to produce GMP grade alginate-encapsulated human hepatocytes has been established. Transplantation of microbeads provided effective metabolic function in ALF. These high quality HMBs should be suitable for use in clinical transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号