共查询到20条相似文献,搜索用时 15 毫秒
1.
D-J Yang X-L Wang A Ismail C J Ashman C F Valori G Wang S Gao A Higginbottom P G Ince M Azzouz J Xu P J Shaw K Ning 《Cell death & disease》2014,5(2):e1096
Excitatory transmission in the brain is commonly mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In amyotrophic lateral sclerosis (ALS), AMPA receptors allow cytotoxic levels of calcium into neurons, contributing to motor neuron injury. We have previously shown that oculomotor neurons resistant to the disease process in ALS show reduced AMPA-mediated inward calcium currents compared with vulnerable spinal motor neurons. We have also shown that PTEN (phosphatase and tensin homolog deleted on chromosome 10) knockdown via siRNA promotes motor neuron survival in models of spinal muscular atrophy (SMA) and ALS. It has been reported that inhibition of PTEN attenuates the death of hippocampal neurons post injury by decreasing the effective translocation of the GluR2 subunit into the membrane. In addition, leptin can regulate AMPA receptor trafficking via PTEN inhibition. Thus, we speculate that manipulation of AMPA receptors by PTEN may represent a potential therapeutic strategy for neuroprotective intervention in ALS and other neurodegenerative disorders. To this end, the first step is to establish a fibroblast–iPS–motor neuron in vitro cell model to study AMPA receptor manipulation. Here we report that iPS-derived motor neurons from human fibroblasts express AMPA receptors. PTEN depletion decreases AMPA receptor expression and AMPA-mediated whole-cell currents, resulting in inhibition of AMPA-induced neuronal death in primary cultured and iPS-derived motor neurons. Taken together, our results imply that PTEN depletion may protect motor neurons by inhibition of excitatory transmission that represents a therapeutic strategy of potential benefit for the amelioration of excitotoxicity in ALS and other neurodegenerative disorders. 相似文献
2.
Michele Jacob Leslie A. Todd R. Sonali Majumdar Yingzhu Li Ken-ichi Yamamoto Ellen Puré 《Cellular signalling》2009,21(8):1308-1316
There are two key processes underlying ligand-induced receptor endocytosis: receptor ubiquitylation and remodeling of the actin cytoskeleton. Tyrosine kinases play critical roles in both receptor endocytosis and actin reorganization. Interestingly, members of the Abl family are the only known tyrosine kinases that possess an actin-binding domain and thus have the potential to directly regulate the actin cytoskeleton. However, the role of non-transforming cAbl in receptor endocytosis remains undefined. We report that cAbl promotes ligand-induced antigen receptor endocytosis in B lymphocytes. We show that pharmacologic inhibition or genetic deletion of cAbl causes a defect in tyrosine phosphorylation of the cytoskeletal adapter CrkII. cAbl inhibition or ablation also impairs Rac activation downstream of CrkII, as well as antigen receptor capping and endocytosis. Although phosphorylation of CrkII has been suggested to maintain it in a closed inactive conformation, we demonstrate that it is in fact essential for the activation of Rac. On the other hand, association of CrkII with cCbl, a key mediator of receptor ubiquitylation, does not require CrkII phosphorylation and is cAbl-independent. Phosphorylation of cCbl itself is also cAbl-independent. Our results thus indicate that CrkII links receptor engagement to cytoskeletal remodeling by coupling cCbl- and cAbl-mediated signaling pathways that cooperatively regulate ligand-induced receptor endocytosis. 相似文献
3.
Daolin Tang Rui Kang Kristen M. Livesey Chun-Wei Cheh Adam Farkas Patricia Loughran George Hoppe Marco E. Bianchi Kevin J. Tracey Herbert J. Zeh III Michael T. Lotze 《The Journal of cell biology》2010,190(5):881-892
Autophagy clears long-lived proteins and dysfunctional organelles and generates substrates for adenosine triphosphate production during periods of starvation and other types of cellular stress. Here we show that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage-associated molecular pattern molecule, is a critical regulator of autophagy. Stimuli that enhance reactive oxygen species promote cytosolic translocation of HMGB1 and thereby enhance autophagic flux. HMGB1 directly interacts with the autophagy protein Beclin1 displacing Bcl-2. Mutation of cysteine 106 (C106), but not the vicinal C23 and C45, of HMGB1 promotes cytosolic localization and sustained autophagy. Pharmacological inhibition of HMGB1 cytoplasmic translocation by agents such as ethyl pyruvate limits starvation-induced autophagy. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin1 and sustaining autophagy. Thus, endogenous HMGB1 is a critical pro-autophagic protein that enhances cell survival and limits programmed apoptotic cell death. 相似文献
4.
5.
6.
Paolo Manunta Elisabetta Messaggio Nunzia Casamassima Guido Gatti Simona Delli Carpini Laura Zagato John M. Hamlyn 《生物化学与生物物理学报:疾病的分子基础》2010,1802(12):1214-1218
The Na+ pump and its Endogenous modulator Ouabain (EO) can be considered as an ancestral enzymatic system, conserved among species ranging from Drosophila to humans, related to Na handling. In this review, we examine how EO is linked with vascular function in hypertension and if it impacts the pathogenesis of heart and renal failure. Moreover, the molecular mechanism of endogenous ouabain-linked hypertension involves the sodium pump/sodium–calcium exchanger duet. Biosynthesis of EO occurs in adrenal glands and is under the control of angiotensin II, ACTH and epinephrine. Elevated concentrations of EO and in the sub-nanomolar concentration range were found to stimulate proliferation and differentiation of cardiac and smooth muscle cells. They may have a primary role in the development of cardiac dysfunction and failure. Experimental data suggest that the Na/K-ATPase α2-catalytic subunit causes EO-induced vasoconstriction. Finally, maneuvers that promote Na depletion, as diuretic therapy or reduced Na intake, raise the EO levels. Taken together, these findings suggest a key role for EO in body Na homeostasis. 相似文献
7.
X Zhang Y Ling Y Guo Y Bai X Shi F Gong P Tan Y Zhang C Wei X He A Ramirez X Liu C Cao H Zhong Q Xu R Z Ma 《Cell death & disease》2016,7(7):e2292
Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells.Massive chromosome missegregation induces cell death as observed by Theodor Boveri in the early 1900s.1 However, the underlying mechanism remains elusive. The spindle assembly checkpoint (SAC) is a dominant machine monitoring chromosomal segregation during mitosis by delaying the onset of anaphase until all chromosomes are properly captured by microtubules. The SAC consists of kinetochore association sensors, including Mps1 (monopolar spindle 1), Bub1 (budding uninhibited by benzimidazole 1 homolog) and Aurora B; a signaling transducer termed the mitotic checkpoint complex (MCC), including CDC20 (cell division cycle 20), BubR1 (Bub1-related kinase), Bub3 (budding uninhibited by benzimidazole 3 homolog) and Mad2 (mitotic arrest deficient-like 2); and an effector APC/C (anaphase-promoting complex/cyclosome) that is inhibited by MCC in response to an active SAC.2 Loss of SAC by inactivation of checkpoint sensors or signaling transducers elicits massive chromosome missegregation, induces severe gain or loss of chromosomes and eventually causes cell death.3, 4, 5, 6 Meanwhile, a weakened SAC due to the haploinsufficiency of the checkpoint proteins Mad1, Mad2, Bub1, BubR1 and CENP-E (centromere protein E) does not cause cell death but facilitates tumorigenesis.7, 8, 9, 10, 11 These studies suggest that the fate of these cells is dependent on their respective degree of SAC deficiency. Notably, in these studies SAC proteins were constitutively disturbed, raising the possibility that other signaling pathways could be affected as SAC proteins have functions beyond SAC regulation.12, 13, 14Mps1 is an essential component of SAC that senses SAC signal by promoting MCC formation via kinetochore recruitment of Mad2, CENP-E and Knl1 (kinetochore-null protein 1).15, 16, 17, 18, 19 Recent studies show that Mps1 can discriminate between on or off SAC signaling by binding to NDC80c via the motif that associates microtubules.20, 21 Following SAC, Mps1 is involved in regulating chromosome alignment by phosphorylating Borealin, a component of chromosomal passenger complex (CPC).22, 23 In addition, Mps1 plays multiple roles beyond mitosis, including centrosome duplication, cytokinesis, ciliogenesis and DNA damage response.18, 24, 25, 26, 27, 28 Mps1 is indispensable for cell survival as loss of Mps1 function by specific siRNA or Mps1 kinase inhibitors causes significant cell death; it has been proposed that Mps1 regulates this process through its roles in SAC.29, 30, 31Mps1 kinase is overexpressed in a variety of tumor types.32, 33, 34, 35 In breast cancer, high levels of Mps1 correlate with tumor grades; reducing Mps1 level induces massive apoptosis but allows a selective survival of tumor cells with less aneuploidy.32 Our recent results in colon cancer cells showed that overexpression of Mps1 facilitate the survival of tumor cells with higher aneuploidy by decreasing SAC threshold.35 To further uncover the roles of high levels of Mps1 in tumorigenesis, we examined Mps1 levels in various stages of colon cancer tissues and found that Mps1 level peaks in tissues at stage II, at which stage tumor cells encounter various survival stresses, including genome instability. Aneuploid colon cancer cell lines bear higher levels of Mps1 than diploid cell lines and the amount of Mps1 required for cell survival is far more than that of maintaining SAC, suggesting that other functions of Mps1 are also employed to maintain cell viability. Short-term inhibition of Mps1 activity in mitosis with inhibitors at a dose of more than SAC depletion is sufficient to cause dividing cell death and increase mitochondrial fragmentation simultaneously. Finally, we found that Mps1 can regulate the release of cytochrome c by associating with mitochondrial protein VDAC1 (voltage-dependent anion channel 1). Based on these findings, we postulated that high levels of Mps1 contribute to survival of aneuploid cancer cells via its roles in SAC and mitochondria. 相似文献
8.
We have investigated the effects of endogenous angiotensin II (ANG II) on hepatic angiotensinogen mRNA levels in rats. Changes in endogenous ANG II were induced by various sodium intakes (standard-, low-, and high-sodium) or by enalapril treatment. In a low sodium state for 2 weeks, angiotensinogen mRNA levels and plasma ANG II concentration increased 1.3-fold and 1.6-fold compared to those in standard sodium state, respectively. In a high sodium state, angiotensinogen mRNA levels and plasma ANG II concentration decreased by 42% and 56% compared to the standard sodierm state, respectively. Four hours after treatment with enalapril (3 mg/kg), angiotensinogen mRNA level and plasma ANG II concentration decreased by 25% and 12% compared to the standard sodium state, respectively. There was a close correlation between angiotensinogen mRNA level and plasma ANG II concentration (r = 0.79, P less than 0.01). These results suggest that endogenous ANG II may play an important role in the regulation of hepatic angiotensinogen synthesis. 相似文献
9.
The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress 总被引:23,自引:0,他引:23
The efficient clearance of cytotoxic misfolded protein aggregates is critical for cell survival. Misfolded protein aggregates are transported and removed from the cytoplasm by dynein motors via the microtubule network to a novel organelle termed the aggresome where they are processed. However, the means by which dynein motors recognize misfolded protein cargo, and the cellular factors that regulate aggresome formation, remain unknown. We have discovered that HDAC6, a microtubule-associated deacetylase, is a component of the aggresome. We demonstrate that HDAC6 has the capacity to bind both polyubiquitinated misfolded proteins and dynein motors, thereby acting to recruit misfolded protein cargo to dynein motors for transport to aggresomes. Indeed, cells deficient in HDAC6 fail to clear misfolded protein aggregates from the cytoplasm, cannot form aggresomes properly, and are hypersensitive to the accumulation of misfolded proteins. These findings identify HDAC6 as a crucial player in the cellular management of misfolded protein-induced stress. 相似文献
10.
Molecular and Cellular Biochemistry - Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age. Although much is understood concerning the pathology of PCOS,... 相似文献
11.
12.
13.
14.
Previous work from this laboratory demonstrated that intracerebroventricular (i.c.v.) administration of IgG antibodies directed against selected neuropeptides changed the density of opioid receptors, suggesting that neuropeptides in the CNS can perform a regulatory role. To further test this hypothesis, we administered anticorticotropin (CRF) IgG to rats via the i.c.v. route and measured the density of opioid mu and delta receptors and also beta- and alpha2-adrenergic receptors. The results demonstrated that anti-CRF IgG upregulates mu and beta-adrenergic receptors. We conclude that CRF in the cerebrospinal fluid may exert regulatory effects throughout the brain. 相似文献
15.
Yuyang Sun Pramod Sukumaran Archana Varma Susan Derry Abe E. Sahmoun Brij B. Singh 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Cholesterol has been shown to promote cell proliferation/migration in many cells; however the mechanism(s) have not yet been fully identified. Here we demonstrate that cholesterol increases Ca2 + entry via the TRPM7 channel, which promoted proliferation of prostate cells by inducing the activation of the AKT and/or the ERK pathway. Additionally, cholesterol mediated Ca2 + entry induced calpain activity that showed a decrease in E-cadherin expression, which together could lead to migration of prostate cancer cells. An overexpression of TRPM7 significantly facilitated cholesterol dependent Ca2 + entry, cell proliferation and tumor growth. Whereas, TRPM7 silencing or inhibition of cholesterol synthesis by statin showed a significant decrease in cholesterol-mediated activation of TRPM7, cell proliferation, and migration of prostate cancer cells. Consistent with these results, statin intake was inversely correlated with prostate cancer patients and increase in TRPM7 expression was observed in samples obtained from prostate cancer patients. Altogether, we provide evidence that cholesterol-mediated activation of TRPM7 is important for prostate cancer and have identified that TRPM7 could be essential for initiation and/or progression of prostate cancer. 相似文献
16.
Yazlovitskaya EM Linkous AG Thotala DK Cuneo KC Hallahan DE 《Cell death and differentiation》2008,15(10):1641-1653
Radiosensitivity of various normal tissues is largely dependent on radiation-triggered signal transduction pathways. Radiation simultaneously initiates distinct signaling from both DNA damage and cell membrane. Specifically, DNA strand breaks initiate cell-cycle delay, strand-break repair or programmed cell death, whereas membrane-derived signaling through phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) enhances cell viability. Here, activation of cytosolic phospholipase A(2) (cPLA(2)) and production of the lipid second-messenger lysophosphatidylcholine were identified as initial events (within 2 min) required for radiation-induced activation of Akt and ERK1/2 in vascular endothelial cells. Inhibition of cPLA(2) significantly enhanced radiation-induced cytotoxicity due to an increased number of multinucleated giant cells and cell cycle-independent accumulation of cyclin B1 within 24-48 h of irradiation. Delayed programmed cell death was detected at 72-96 h after treatment. Endothelial functions were also affected by inhibition of cPLA(2) during irradiation resulting in attenuated cell migration and tubule formation. The role of cPLA(2) in the regulation of radiation-induced activation of Akt and ERK1/2 and cell viability was confirmed using human umbilical vein endothelial cells transfected with shRNA for cPLA(2)alpha and cultured embryonic fibroblasts from cPLA(2)alpha(-/-) mice. In summary, an immediate radiation-induced cPLA(2)-dependent signaling was identified that regulates cell viability and, therefore, represents one of the key regulators of radioresistance of vascular endothelial cells. 相似文献
17.
Chhun T Aya K Asano K Yamamoto E Morinaka Y Watanabe M Kitano H Ashikari M Matsuoka M Ueguchi-Tanaka M 《The Plant cell》2007,19(12):3876-3888
18.
《Cell cycle (Georgetown, Tex.)》2013,12(11):2102-2107
DNA damage impairs cell growth by delaying or preventing critical processes such as DNA replication and chromosome segregation. In normal proliferating cells, initiation of these processes is controlled by genetically-defined pathways known as checkpoints. Tumors often acquire mutations that disable checkpoints and cancer cells can therefore progress unimpeded into S-phase, through G2 and into mitosis with chromosomal DNA damage. Checkpoint bypass in cancer cells is associated with cell death and loss of proliferative capacity and therefore is believed to contribute to the efficacy of DNA-damaging therapies. Are cancer cell clones that bypass checkpoints invariably more sensitive to DNA damage than checkpoint-proficient cells in normal tissues? We present evidence that the inherent survival of damaged human cells can be surprisingly independent of checkpoint control. 相似文献
19.
20.
In vitro chondrogenesis and cell viability 总被引:1,自引:0,他引:1
Anterior somites cultured with (NSA) or without (SA) notochord, and posterior somites cultured with (NSP) or without notochord (SP) were compared with respect to changes in their DNA content, their potential to synthesize the active sulfate principle phosphoadenosine phosphosulfate (PAPS), and their ability to accumulate 35S-sulfate.Chondrogenesis was observed in the NSA, NSP, and SP explants, but was rarely noted in the SA explants. A decrease in DNA content during the initial 48 hr of culture was common to all explants. After this initial decrease, DNA content increased most in those explants forming cartilage. The synthesis of PAPS by cell-free extracts of each type of somite explant also decreased during the initial period of culture. Only extracts of those explants undergoing chondrogenesis showed increases in PAPS synthesis with continued culture. Each type of somite explant accumulated 35S-sulfate into chondroitin sulfate during the first hours of culture. The non-chondrogenic SA explants accumulated little 35S-sulfate during the period of culture. At varying times after 24 hr the chondrifying explants (NSA, SP, and NSP) initiated an increased rate of accumulation of 35S-sulfate.Cartilage nodules, increases in DNA content, PAPS synthesis and 35S-sulfate accumulation occurred within the same 24 hr period, during the 2nd day in NSP explants, the 3rd day in NSA explants, and between the 3rd and 4th day for SP explants. A hypothesis of in vitro somite chondrogenesis based on differential cell viability is presented. 相似文献