首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the “core” redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.  相似文献   

2.
3.
We have studied the import of the precursor to yeast cytochrome c oxidase subunit Va, a protein of the mitochondrial inner membrane. Like the majority of mitochondrial precursor proteins studied thus far, import of presubunit Va was dependent upon both a membrane potential (delta psi) and the hydrolysis of ATP. However, the levels of ATP necessary for the import of presubunit Va were significantly lower than those required for the import of a different mitochondrial precursor protein, the beta subunit of the F1-ATPase. The rate of import of presubunit Va was found to be unaffected by temperature over the range 0 to 30 degrees C, and was not facilitated by prior denaturation of the protein. These results, in conjunction with those of an earlier study demonstrating that presubunit Va could be efficiently targeted to mitochondria with minimal presequences, suggest that the subunit Va precursor normally exists in a loosely folded conformation. Presubunit Va could also be imported into mitochondria that had been pretreated with high concentrations of trypsin or proteinase K (1 mg/ml and 200 micrograms/ml, respectively). Furthermore, the rate of import into trypsin-treated mitochondria, at both 0 and 30 degrees C, was identical to that observed with the untreated organelles. Thus, import of presubunit Va is not dependent upon the function of a protease-sensitive surface receptor. When taken together, the results of this study suggest that presubunit Va follows an unusual import pathway. While this pathway uses several well-established translocation steps, in its entirety it is distinct from either the receptor-independent pathway used by apocytochrome c, or the more general pathway used by a majority of mitochondrial precursor proteins.  相似文献   

4.
Mitochondrial biogenesis refers to increased content of mitochondria, which has been shown to be promoted by aerobic exercise. During this process, oxidative stress is considered the essential initiator. Even though some studies have addressed the issue as to whether antioxidants would hamper the effects of exercise on mitochondrial biogenesis, no consensus has been achieved. Therefore, the purpose of the present study was to investigate the effects of exercise and antioxidant intervention on mitochondrial biogenesis, as well as COX biogenesis. Thirty-two clean-grade male ICR mice were randomly assigned to a control group (Con), exercise group (Ex), N-acetyl-l-cysteine group (NAC), or NAC plus exercise group (NEx). The NAC and NEx groups were injected with NAC (0.1 mg/g/2 days) intraperitoneally for 3 weeks, whereas the Con and Ex groups were administered saline for the same period of time. Mice assigned to Ex and NEx groups started exercise training 1 week before drug intervention was initiated. After 1 week of acclimatization, the mice were allowed to run at a speed of 28 m/min for 60 min, 6 days a week. The results showed that exercise training caused an increase in mRNA and protein levels of COXIV, whereas NAC intervention lowered the two so significantly that even exercise training could not reverse the effect of NAC intervention. Our data suggest that even though antioxidant intervention could alleviate oxidative damage caused by exercise, it was not necessarily beneficial for mitochondrial biogenesis.  相似文献   

5.
The import of cytochrome c into Neurospora crassa mitochondria was examined at distinct stages in vitro. The precursor protein, apocytochrome c, binds to mitochondria with high affinity and specificity but is not transported completely across the outer membrane in the absence of conversion to holocytochrome c. The bound apocytochrome c is accessible to externally added proteases but at the same time penetrates far enough through the outer membrane to interact with cytochrome c heme lyase. Formation of a complex in which apocytochrome c and cytochrome c heme lyase participate represents the rate-limiting step of cytochrome c import. Conversion from the bound state to holocytochrome c, on the other hand, occurs 10-30-fold faster. Association of apocytochrome c with cytochrome c heme lyase also takes place after solubilizing mitochondria with detergent. We conclude that the bound apocytochrome c, spanning the outer membrane, forms a complex with cytochrome c heme lyase from which it can react further to be converted to holocytochrome c and be translocated completely into the intermembrane space.  相似文献   

6.
Dramatically elevated levels of the COX2 mitochondrial mRNA-specific translational activator protein Pet111p interfere with respiratory growth and cytochrome c oxidase accumulation. The respiratory phenotype appears to be caused primarily by inhibition of the COX1 mitochondrial mRNA translation, a finding confirmed by lack of cox1Delta::ARG8(m) reporter mRNA translation. Interference with Cox1p synthesis depends to a limited extent upon increased translation of the COX2 mRNA, but is largely independent of it. Respiratory growth is partially restored by a chimeric COX1 mRNA bearing the untranslated regions of the COX2 mRNA, and by overproduction of the COX1 mRNA-specific activators, Pet309p and Mss51p. These results suggest that excess Pet111p interacts unproductively with factors required for normal COX1 mRNA translation. Certain missense mutations in PET111 alleviate the interference with COX1 mRNA translation but do not completely restore normal respiratory growth in strains overproducing Pet111p, suggesting that elevated Pet111p also perturbs assembly of newly synthesized subunits into active cytochrome c oxidase. Thus, this severe imbalance in translational activator levels appears to cause multiple problems in mitochondrial gene expression, reflecting the dual role of balanced translational activators in cooperatively regulating both the levels and locations of organellar translation.  相似文献   

7.
The subunit structure of the cytochrome c oxidase complex has been obtained for three preparations each isolated by a different detergent procedure. Six polypeptides were present in all samples with the following molecular weights: subunits I, 36000; II, 22500, III, 17100; IV, 12500; V, 9700; and VI, 5300. These subunits have been purified by gel filtration in sodium dodecyl sulfate or in 6 M guanidine hydrochloride and their amino acid compositions have been determined. Subunit I is hydrophobic in character with a polarity of 35.7%. Subunits II through VI are more hydrophilic with polarities of 45.5, 48.6, 47.8, 49.7, and 53.7%, respectively.  相似文献   

8.
We have cloned and sequenced COX12, the nuclear gene for subunit VIb of Saccharomyces cerevisiae cytochrome c oxidase. This subunit, which was previously not found in cytochrome c oxidase purified from S. cerevisiae, has a deduced amino acid sequence which is 41% identical to the sequences of subunits VIb of bovine and human cytochrome c oxidases. The chromosomal copy of COX12 was replaced with a plasmid-derived copy of COX12, in which the coding region for the suspected cytochrome oxidase subunit was replaced with the yeast URA3 gene. The resulting Ura+ deletion strain grew poorly at room temperature and was unable to grow at 37 degrees C on ethanol/glycerol medium, whereas growth was normal at both temperatures on dextrose. This temperature-dependent, petite phenotype of the deletion strain was complemented to wild-type growth with a single copy plasmid carrying COX12. Cytochrome c oxidase activity in mitochondrial membranes from the cox12 deletion strain is decreased to 5-15% of that in membranes from the wild-type parent, and this activity is restored to normal when the cox12 deletion strain is complemented by the plasmid-borne COX12. Optical spectra of mitochondrial membranes from the cox12 deletion strain revealed that optically detectable cytochrome c oxidase is assembled at room temperature and at 37 degrees C, although the heme a + a3 absorption is diminished approximately 50%. The N-terminal amino acid sequence of the protein encoded by COX12 is identical to the N-terminal sequence of a subunit found in yeast cytochrome c oxidase purified by a new procedure (Taanman, J.-W., and Capaldi, R. A. (1992) J. Biol. Chem. 267, 22481-22485). We conclude that COX12 encodes a subunit of yeast cytochrome c oxidase which is essential during assembly for full cytochrome c oxidase activity but apparently can be removed after the oxidase is assembled, with retention of oxidase activity. This is the first instance in which deletion of a subunit of cytochrome c oxidase results in assembly of optically detectable cytochrome c oxidase but having markedly diminished activity.  相似文献   

9.
Cytochrome c is the specific and efficient electron transfer mediator between the two last redox complexes of the mitochondrial respiratory chain. Its interaction with both partner proteins, namely cytochrome c(1) (of complex III) and the hydrophilic Cu(A) domain (of subunit II of oxidase), is transient, and known to be guided mainly by electrostatic interactions, with a set of acidic residues on the presumed docking site on the Cu(A) domain surface and a complementary region of opposite charges exposed on cytochrome c. Information from recent structure determinations of oxidases from both mitochondria and bacteria, site-directed mutagenesis approaches, kinetic data obtained from the analysis of isolated soluble modules of interacting redox partners, and computational approaches have yielded new insights into the docking and electron transfer mechanisms. Here, we summarize and discuss recent results obtained from bacterial cytochrome c oxidases from both Paracoccus denitrificans, in which the primary electrostatic encounter most closely matches the mitochondrial situation, and the Thermus thermophilus ba(3) oxidase in which docking and electron transfer is predominantly based on hydrophobic interactions.  相似文献   

10.
11.
Subunit II of yeast cytochrome c oxidase is synthesized on mitochondrial ribosomes as a precursor containing a transient NH2-terminal presequence and is inserted into the mitochondrial inner membrane from the matrix side. Using an optimized in vitro mitochondrial translation system (McKee, E.E., and Poyton, R. O. (1984) J. Biol. Chem. 259, 9320-9331), we have examined the requirement for an electrochemical potential (delta mu H+) across the inner mitochondrial membrane during subunit II biogenesis. When mitochondrial gene products are synthesized under conditions that prevent formation of a normal delta mu H+, accumulation of unprocessed subunit II (pre-II) occurs. The majority of pre-II generated in this way is inserted into the lipid bilayer, as judged by resistance to extraction with 0.1 M Na2CO3. Therefore, it appears that a delta mu H+ is required for the normal biogenesis of subunit II, and that the delta mu H+ is required for a function other than the insertion of pre-II into the lipid bilayer of the inner membrane.  相似文献   

12.
Summary We have detected sequence heterogeneity in the cytochrome c oxidase subunit I (COI) gene of a freshwater planarian, Dugesia japonica, collected in one locality. A part of the COI gene was amplified via the polymerase chain reaction (PCR) using template DNA prepared from a mixture of 500 individuals or from each of 18 individuals. Analyses of DNA sequences by standard strategies for cloning and sequencing or by direct sequencing clearly show that (1) considerable sequence heterogeneity exists in DNA prepared from the mixed individuals, (2) 11 individuals have almost identical sequences (type A), and (3) 7 individuals have sequences different from one another (Seq-D 1 to SeqD7; collectively called type D). Each of the Seq-D1-D7 sequences except for Seq-D5 shows some heterogeneity even in a single individual (heteroplasmy). A possible cause of the sequence heterogeneities is discussed.Offprint requests to: Y. Bessho  相似文献   

13.
The COX6 gene encodes subunit VI of cytochrome c oxidase. Previously, this gene and its mRNAs were characterized, and its expression has been shown to be subject to glucose repression/derepression. In this study we have examined the effects of heme and the HAP1 (CYP1) and HAP2 genes on the expression of COX6. By quantitating COX6 RNA levels and assaying beta-galactosidase activity in yeast cells carrying COX6-lacZ fusion genes, we have found that COX6 is regulated positively by heme and HAP2, but is unaffected by HAP1. Through 5' deletion analysis we have also found that the effects of heme and HAP2 on COX6 are mediated by sequences between 135 and 590 base pairs upstream of its initiation codon. These findings identify COX6 as the fourth respiratory protein gene that is known to be regulated positively by heme and HAP2. The other three, CYC1, COX4, and COX5a, encode iso-1-cytochrome c, cytochrome c oxidase subunit IV, and an isolog, Va, of cytochrome c oxidase subunit V, respectively. Thus, it appears that the biogenesis of two interacting proteins, cytochrome c and cytochrome c oxidase, in the mitochondrial respiratory chain, are under the control of common factors.  相似文献   

14.
Cytochrome c oxidase from Saccharomyces cerevisiae is composed of nine subunits. Subunits I, II and III are products of mitochondrial genes, while subunits IV, V, VI, VII, VIIa and VIII are products of nuclear genes. To investigate the role of cytochrome c oxidase subunit VII in biogenesis or functioning of the active enzyme complex, a null mutation in the COX7 gene, which encodes subunit VII, was generated, and the resulting cox7 mutant strain was characterized. The strain lacked cytochrome c oxidase activity and haem a/a3 spectra. The strain also lacked subunit VII, which should not be synthesized owing to the nature of the cox7 mutation generated in this strain. The amounts of remaining cytochrome c oxidase subunits in the cox7 mutant were examined. Accumulation of subunit I, which is the product of the mitochondrial COX1 gene, was found to be decreased relative to other mitochondrial translation products. Results of pulse-chase analysis of mitochondrial translation products are consistent with either a decreased rate of translation of COX1 mRNA or a very rapid rate of degradation of nascent subunit I. The synthesis, stability or mitochondrial localization of the remaining nuclear-encoded cytochrome c oxidase subunits were not substantially affected by the absence of subunit VII. To investigate whether assembly of any of the remaining cytochrome c oxidase subunits is impaired in the mutant strain, the association of the mitochondrial-encoded subunits I, II and III with the nuclear-encoded subunit IV was investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The biogenesis of cytochrome c1 involves a number of steps including: synthesis as a precursor with a bipartite signal sequence, transfer across the outer and inner mitochondrial membranes, removal of the first part of the presequence in the matrix, reexport to the outer surface of the inner membrane, covalent addition of heme, and removal of the remainder of the presequence. In this report we have focused on the steps of heme addition, catalyzed by cytochrome c1 heme lyase, and of proteolytic processing during cytochrome c1 import into mitochondria. Following translocation from the matrix side to the intermembrane-space side of the inner membrane, apocytochrome c1 forms a complex with cytochrome c1 heme lyase, and then holocytochrome c1 formation occurs. Holocytochrome c1 formation can also be observed in detergent-solubilized preparations of mitochondria, but only after apocytochrome c1 has first interacted with cytochrome c1 heme lyase to produce this complex. Heme linkage takes place on the intermembrane-space side of the inner mitochondrial membrane and is dependent on NADH plus a cytosolic cofactor that can be replaced by flavin nucleotides. NADH and FMN appear to be necessary for reduction of heme prior to its linkage to apocytochrome c1. The second proteolytic processing of cytochrome c1 does not take place unless the covalent linkage of heme to apocytochrome c1 precedes it. On the other hand, the cytochrome c1 heme lyase reaction itself does not require that processing of the cytochrome c1 precursor to intermediate size cytochrome c1 takes place first. In conclusion, cytochrome c1 heme lyase catalyzes an essential step in the import pathway of cytochrome c1, but it is not involved in the transmembrane movement of the precursor polypeptide. This is in contrast to the case for cytochrome c in which heme addition is coupled to its transport directly across the outer membrane into the intermembrane space.  相似文献   

16.
17.
We have examined the steady-state redox behavior of cytochrome c (Fec), Fea, and CuA of cytochrome c oxidase during steady-state turnover in intact rat liver mitochondria under coupled and uncoupled conditions. Ascorbate was used as the reductant and TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine) as the redox mediator. After elimination of spectroscopic interference from the oxidized form of TMPD, we found that Fea remains significantly more oxidized than previously thought. During coupled turnover, CuA always appears to be close to redox equilibrium with Fec. By increasing the amount of TMPD, both centers can be driven to fairly high levels of reduction while Fea remains relatively oxidized. The reduction level at Fea is close to a linear function of the enzyme turnover rate, but the levels at Fec and CuA do not keep pace with enzyme turnover. This behavior can be explained in terms of a redox equilibrium among Fec, CuA, and Fea, where Fea is the electron donor to the oxygen reduction site, but only if Fea has an effective Em (redox midpoint potential) of 195 mV. This is too low to be accounted for on the basis of nonturnover measurements and the effects of the membrane potential. However, if there is no equilibrium, the internal CuA----Fea electron-transfer rate constant must be slow in the time average (about 200 s-1). Other factors which might contribute to such a low Em are discussed. In the presence of uncoupler, this situation changes dramatically. Both Fec and CuA are much less reduced; within the resolution of our measurements (about 10%), we were unable to measure any reduction of CuA. Fea and CuA remain too oxidized to be in redox equilibrium with Fec during steady-state turnover. Furthermore, our results indicate that, in the uncoupled system, the (time-averaged) internal electron-transfer rate constants in cytochrome oxidase must be of the order of 2500 s-1 or higher. When turnover is slowed by azide, the relative redox levels at Fea and Fec are much closer to those predicted from nonturnover measurements. In presence of uncouplers, Fea is always more reduced than Fec, but in the absence of uncouplers, the two centers track together. Unlike the uninhibited, coupled system, the redox behavior here is consistent with the known effect of the electrical membrane potential on electron distribution in the enzyme. Interestingly, in these circumstances (azide and uncoupler present), Fea behaves as if it were no longer the kinetically controlling electron donor to the bimetallic center.  相似文献   

18.
Two genes encoding cytochrome c oxidase subunits, Cox2a and Cox2b, are present in the nuclear genomes of apicomplexan parasites and show sequence similarity to corresponding genes in chlorophycean algae. We explored the presence of COX2A and COX2B subunits in the cytochrome c oxidase of Toxoplasma gondii. Antibodies were raised against a synthetic peptide containing a 14-residue fragment of the COX2A polypeptide and against a hexa-histidine-tagged recombinant COX2B protein. Two distinct immunochemical stainings localized the COX2A and COX2B proteins in the parasite's mitochondria. A mitochondria-enriched fraction exhibited cyanide-sensitive oxygen uptake in the presence of succinate. T. gondii mitochondria were solubilized and subjected to Blue Native Electrophoresis followed by second dimension electrophoresis. Selected protein spots from the 2D gels were subjected to mass spectrometry analysis and polypeptides of mitochondrial complexes III, IV and V were identified. Subunits COX2A and COX2B were detected immunochemically and found to co-migrate with complex IV; therefore, they are subunits of the parasite's cytochrome c oxidase. The apparent molecular mass of the T. gondii mature COX2A subunit differs from that of the chlorophycean alga Polytomella sp. The data suggest that during its biogenesis, the mitochondrial targeting sequence of the apicomplexan COX2A precursor protein may be processed differently than the one from its algal counterpart.  相似文献   

19.
Little is presently known about the nuclear-encoded genes for cytochrome c oxidase (COX) in higher plants. In rice, only the nuclear-encoded COX5b gene has been reported. To understand the relationship between the expression of nuclear-encoded and mitochondrial-encoded COX genes in rice, we first characterized a cDNA encoding one of the other nuclear COX genes, COX5c, which encodes 63 amino acids. The deduced amino acid sequence of COX5c from rice was highly homologous to that from sweet potato. Genomic Southern hybridization indicated that the rice COX5c subunit is encoded by a single copy of the COX5c gene. Furthermore, we compared the expression patterns of the nuclear-encoded COX5c and COX5b genes with the expression pattern of the mitochondrial-encoded COX1 gene among several organs by Northern blot analysis. The results suggested that regulatory systems of expression between the nuclear-encoded and the mitochondrial-encoded COX genes are different among different organs in rice.  相似文献   

20.
All tRNAHis possess an essential extra G–1 guanosine residue at their 5′ end. In eukaryotes after standard processing by RNase P, G–1 is added by a tRNAHis guanylyl transferase. In prokaryotes, G–1 is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G–1 we find here that both maturation pathways can be used. Indeed, tRNAHis with or without a G–1 are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNAHis precursors at both positions G+1 and G–1. The G–1 is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNAHis without G–1 has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNAHis with a G–1 are recovered. This shows that a previously unreported tRNAHis guanylyltransferase activity is present in plant mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号