首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 546 毫秒
1.
赖平  王凭青  张宝云  储明星  刘重旭  谭颖  樊奇 《遗传》2012,34(3):281-288
动物的季节性繁殖, 是指其繁殖活动从静止到复苏的一个年周期性循环。研究显示, kisspeptin和RFRP对繁殖的季节性变化具有重要作用。非繁殖期最显著的特点是雌激素对GnRH分泌的负反馈效应的增加, 而雌激素的这种效应是由kisspeptin神经元传导的。因此, kisspeptin是影响繁殖活动的一个重要因子。RFRP的表达依赖于褪黑激素的分泌并呈现出季节性变化, 在非繁殖期对繁殖活动的抑制作用非常明显。此外, 甲状腺激素在繁殖期的终止上发挥着至关重要的作用, 而多巴胺能神经元A14/A15也促进了雌激素负反馈效应的季节性变化。这些神经元系统通过协同作用一起调节了生殖功能随光周期的季节性转变。文章对繁殖的季节性和这4个神经内分泌系统之间的关系进行了系统的阐述。  相似文献   

2.
生活在温带和寒带的哺乳动物在长期的进化过程中形成了季节性繁殖的生活史特征。哺乳动物的繁殖功能主要受到下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonadal axis,HPGA)的调控。视交叉上核(suprachiasmatic nucleus,SCN)能够自发振荡并响应光周期信号的变化,引发褪黑素分泌的改变,并介导下游通路中下丘脑甲状腺激素、Kisspeptin和RF酰胺相关肽(RF amide-related peptide,RFRP)的节律性表达变化,从而调控哺乳动物的季节性繁殖。本文综述了哺乳动物季节性繁殖的内源年生物钟调控,并强调了光敏通路中包括甲状腺激素、Kisspeptin和RFRP在季节性繁殖调控中的重要作用。  相似文献   

3.
高原鼠兔是青藏高原特有的小型哺乳动物,其繁殖活动呈现明显的季节性。成年雄性高原鼠兔在繁殖期睾丸重量显著增加,精子发生正常进行,而在非繁殖期睾丸退化,精子发生阻断在未分化精原细胞阶段。光周期控制实验显示,长光照(16h∶8h)诱导非繁殖期高原鼠兔重新启动精原细胞分化和精子发生;而短光照(8h∶16h)显著抑制繁殖期高原鼠兔精子发生。酶联免疫分析发现,褪黑素分泌水平在长日照条件下降低而在短日照条件下升高。非繁殖期高原鼠兔连续注射褪黑素拮抗剂能诱导生殖细胞发育和精子发生恢复。促性腺激素释放激素(GnRH)与黄体生成素(LH)在繁殖期鼠兔下丘脑垂体显著升高,促卵泡素(FSH)水平无显著差异。注射GnRH可以促进非繁殖期高原鼠兔精原细胞分化和精子发生,而褪黑素注射后抑制GnRH的分泌进而负调控性腺轴。综上,高原鼠兔季节性精子发生受光周期-褪黑素信号控制,后者主要通过控制GnRH、LH水平影响精原细胞分化。本研究对理解季节性动物精子发生的调控机制有重要借鉴意义。  相似文献   

4.
章翊  孙宁霞 《生理学报》2020,72(1):125-132
近年来研究显示,kisspeptin在大脑的性别分化、性激素正负反馈调节、青春期始动以及机体能量信号转导等生理过程中起到重要作用,表明kisspeptin可能是女性生殖功能成熟及调控的一个关键性信号因子。除下丘脑分泌的kisspeptin之外,生殖器官局部表达的kisspeptin在机体正常生殖过程中的作用也不断得到证实。研究表明,很多生殖内分泌疾病,如单纯性促性腺激素分泌不足的性腺机能减退症(isolated hypogonadotropic hypogonadism, IHH)、多囊卵巢综合征(polycystic ovary syndrome, PCOS)、卵巢早衰(premature ovarian failure, POF)、病理性高泌乳素血症等,都与kisspeptin的异常表达有关。通过给予外源性kisspeptin可解决辅助生殖技术应用中的一些问题。本文主要就kisspeptin在女性生殖内分泌尤其是在辅助生殖领域研究中所取得的进展进行论述。  相似文献   

5.
季节性繁殖是动物在长期进化中为适应环境变化而形成的生活史特征,受光周期和下丘脑-垂体-性腺轴的严密调控。高原鼢鼠(Eospalax baileyi)是青藏高原特有的地下啮齿类动物,其繁殖活动表现出明显的季节性。然而,地下啮齿类动物精子发生的形态特征和关键调控因子尚不明确。本研究以成年高原鼢鼠为研究对象,发现繁殖期成年雄性睾丸曲精小管内有各级生殖细胞,附睾内有长形精子,生精上皮可分为10个期;而非繁殖期睾丸重量显著下降,曲精小管内仅见精原细胞和支持细胞。激素水平检测结果显示,与非繁殖期相比,繁殖期褪黑素水平显著降低(P < 0.05),促性腺激素释放激素、促黄体生成素和睾酮水平显著升高(P < 0.05),而卵泡刺激素水平无显著差异。进一步研究发现,精原细胞分化的关键诱导因子维甲酸水平和其调控基因表达均呈季节性变化,且外源维甲酸注射能够诱导非繁殖期高原鼢鼠重启精子发生。综上,高原鼢鼠虽为地下动物,但其精子发生与下丘脑-垂体-性腺轴激素水平明显相关,且受睾酮和维甲酸信号的调控。本研究首次揭示了高原鼢鼠精子发生的形态学特征和关键调控因子,为理解季节性繁殖动物尤其是地下啮齿类动物生殖生理的调控机制提供了重要参考。  相似文献   

6.
褪黑素在季节性繁殖动物的生殖细胞发育与性腺功能调控中发挥重要作用,然而褪黑素如何通过下丘脑-垂体-性腺(HPG)轴实现其调控功能目前仍不清楚。因此,本研究选取典型的长日照动物——高原鼠兔(Ochotona curzoniae)作为研究对象,使用酶联免疫吸附法测定繁殖期与非繁殖期雌雄鼠兔的血清褪黑素水平昼夜变化,利用实时荧光定量PCR分析褪黑素受体基因Mtnr1a与Mtnr1b在下丘脑、垂体与性腺中的表达水平,并通过免疫荧光染色进一步确认两种受体在性腺不同类型细胞中的定位。结果显示,非繁殖期雄性鼠兔的血清褪黑素含量始终高于繁殖期,且呈现不同的昼夜变化模式;雌性鼠兔的血清褪黑素含量远低于雄性鼠兔,且在繁殖期与非繁殖期并不存在显著差异。Mtnr1a与Mtnr1b在下丘脑、垂体与性腺中均有表达,雄性鼠兔在下丘脑与垂体中表现出繁殖期与非繁殖期基因表达的显著差异,而雌性鼠兔基因表达的差异主要出现在垂体与性腺中。两种受体蛋白在雄性性腺生殖细胞和支持细胞中均有分布,但MTNR1A更局限于精原细胞内,MTNR1B则在管腔内生殖细胞中表达。雌性性腺中MTNR1A在卵母细胞胞质内有表达,但更集中表达于颗粒细胞;MTNR1B在颗粒细胞以及卵母细胞核质内均有表达,且在生长卵泡的卵泡膜细胞中呈现高表达。以上结果表明,褪黑素调控雌雄高原鼠兔季节性繁殖的模式并不相同,其作用不仅限于通过下丘脑-垂体-性腺轴的间接调控,也可能通过性腺内靶向受体直接影响生殖细胞与体细胞命运。  相似文献   

7.
2020年2月—2021年2月,采用直接观察与红外相机陷阱结合的方法,在四川唐家河国家级自然保护区的大草坪和大草堂区域,对绿尾虹雉Lophophorus lhuysii的繁殖周期及群体活动模式等进行了研究。共获取绿尾虹雉有效探测316次。研究结果表明:1)绿尾虹雉具有季节性群体活动的习性,群体在繁殖期前逐步解散,繁殖期后又逐步聚集,非繁殖期的越冬期会结成大群活动;2)绿尾虹雉的繁殖期为3月下旬—6月中下旬,雌性独自营巢繁殖,雄性多单独活动,也表现为集单性小群体活动;3)繁殖期群体大小为2.58只±0.94只,以单性群为主;非繁殖期群体大小为3.37只±2.30只,以单性群和雌雄混群为主,且两者的遇见率差异不明显;繁殖期和非繁殖期群体活动方式无显著差异。本研究结果丰富了绿尾虹雉的基础资料,为其保护管理策略的制订提供了科学依据。  相似文献   

8.
鸟类驯养中的光照管理   总被引:2,自引:0,他引:2  
光照是重要的生态因子之一,采用合理的光照制度可以改变鸟类自然繁殖的常规,打破其繁殖的季节性,延长繁殖期,提高繁殖成效等,本文结合光周期对鸟类繁殖的影响,分别论述了鸟类不同生活阶段实施光照管理的原则及其作用。  相似文献   

9.
雌激素在中枢神经系统中的作用   总被引:22,自引:0,他引:22  
雌激素对中枢神经系统神经元有多种作用(包括电生理、神经营养和代谢等的作用)。近年来,随着对雌激素作用基因组机制和非基因组机制的研究,人们逐渐加深了其在神经功能方面作用 的认识。目前发现,雌激素在调节下丘脑GnRH神经元功能活动、诱导和维持海马树状棘突,以及保护神经元等诸多方面都发挥着重要作用。流行病学提示,雌激素可以预防绝经妇女患早老性痴呆病(Alzheimer‘sDisease,AD)对神经功能有保护作用,由此可见,雌激素除调节生殖功能活动外,对中枢神经系统还有着更为广泛的作用。  相似文献   

10.
高原鼢鼠 (Eospalax baileyi) 终年营地下生活,感光受洞道限制,但褪黑素 (Melatonin) 分泌水平仍存有季节差异,为探明褪黑素对高原鼢鼠季节性繁殖的调控作用,研究利用q?PCR技术检测雄性高原鼢鼠繁殖期 (5月) 和非繁殖期 (9月) 下丘脑、垂体及睾丸中褪黑素受体1a (Melatonin receptor 1a, MTNR1a) 和褪黑素受体1b (Melatonin receptor 1b, MTNR1b) 基因mRNA的相对表达量,通过免疫组织化学技术对MTNR1a和MTNR1b在睾丸中定位,并采用Image Pro Plus软件进行免疫组化阳性评价。结果发现,高原鼢鼠繁殖期下丘脑和垂体中MTNR1a基因的相对表达量显著高于非繁殖期的相对表达量 (P < 0.05),MTNR1b基因的相对表达量在不同时期无显著差异 (P > 0.05),但非繁殖期睾丸中MTNR1aMTNR1b基因的相对表达量均显著高于繁殖期 (P < 0.01);繁殖期除长形精子外的所有类型细胞以及非繁殖期的间质细胞、支持细胞和精原细胞中均观察到MTNR1a的阳性信号,繁殖期除精原细胞和长形精子细胞外的所有类型细胞,以及非繁殖期间质细胞和支持细胞中均观察到MTNR1b的阳性信号,且非繁殖期MTNR1a和MTNR1b的平均光密度值均显著高于繁殖期 (P < 0.01)。MTNR1aMTNR1b基因在雄性高原鼢鼠HPG轴上的表达模式,提示了褪黑素在其季节性繁殖调控中的潜在作用。  相似文献   

11.
Kisspeptin and seasonality in sheep   总被引:1,自引:0,他引:1  
Sheep are seasonal breeders, experiencing a period of reproductive quiescence during spring and early summer. During the non-breeding period, kisspeptin expression in the arcuate nucleus is markedly reduced. This strongly suggests that the mechanisms that control seasonal changes in reproductive function involve kisspeptin neurons. Kisspeptin cells appear to regulate GnRH neurons and transmit sex-steroid feedback to the reproductive axis. Since the non-breeding season is characterized by increased negative feedback of estrogen on GnRH secretion, the kisspeptin neurons seem to be fundamentally involved in the determination of breeding state. The reduction in kisspeptin neuronal function during the non-breeding season can be corrected by infusion of kisspeptin, which causes ovulation in seasonally acyclic females.  相似文献   

12.
Ghrelin acts on the growth hormone secretagogue receptor (GHSR) in the brain to elicit changes in physiological functions. It is associated with the neural control of appetite and metabolism, however central ghrelin also affects fertility. Central ghrelin injection in rats suppresses luteinizing hormone (LH) concentrations and pulse frequency. Although ghrelin suppresses LH and regulates kisspeptin mRNA in the anteroventral periventricular/periventricular nucleus (AVPV/PeN), there is no neuroanatomical evidence linking GHSR neural circuits to kisspeptin neurons. In this study, we first determined coexpression of GHSR and GnRH neurons using a GHSR-eGFP reporter mouse line. Using dual-label immunohistochemistry, we saw no coexpression. GHSR-eGFP expressing cells were present in the AVPV/PeN and over 90% of these expressed estrogen receptor-α (ERα). Despite this, we observed no evidence of GHSR-eGFP/kisspeptin coexpressing neurons in the AVPV/PeN. To further examine the phenotype of GHSR-eGFP cells in the AVPV/PeN, we determined coexpression with tyrosine hydroxylase (TH) and showed virtually no coexpression in the AVPV/PeN (<2%). We also observed no coexpression of GHSR-eGFP and RFamide-related peptide-3 (RFRP3) neurons in the dorsomedial hypothalamic nucleus. Importantly, we observed that approximately half of the GHSR-eGFP cells in the AVPV coexpressed Ghsr mRNA (as determined by in situ hybridization) so these data should be interpreted accordingly. Although ghrelin influences the hypothalamic reproductive axis, our data using a GHSR-eGFP reporter suggests ghrelin regulates neurons expressing ERα but does not directly act on GnRH, kisspeptin, TH, or RFRP3 neurons, as little or no GHSR-eGFP coexpression was observed.  相似文献   

13.
In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3–5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig–pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology via the feedback cycle in this system. Climatic factors affecting plant reproductive traits cause biotic relationships between plants, mutualists and parasites to vary seasonally and must be accorded greater attention, especially in the context of climate change.  相似文献   

14.
Wild large Japanese field mice (Apodemus speciosus) responses to cyclic seasonal changes are associated with physiological and behavioral changes. However, the detailed regulation of oogenesis in the ovary during the seasonal reproductive cycle in wild large Japanese field mice has not been studied. We assessed the dynamics and changes in ovarian morphology and hormone concentrations associated with reproductive seasonality throughout the year. The stages of the ovarian morphological breeding cycle of wild large Japanese field mice were classified as breeding, transition, and non-breeding periods during the annual reproductive cycle. Measurement of blood estradiol concentrations throughout the year showed that the levels in September and October were higher than those in other months. It is presumed that follicle development starts from a blood estradiol concentration of 38.4 ± 27.1 pg/mL, which marks a shift from the transitional season to the breeding season, followed by the transition to the non-breeding season at 26.1 ± 11.6 pg/mL. These results suggest that seasonal follicle development in wild rodents is correlated with estradiol regulation. We consider this species to be an alternative animal model for studying seasonal reproductive changes and the effects of environmental changes.  相似文献   

15.
Smith JT 《Peptides》2009,30(1):94-102
In recent years, the Kiss1 gene has been cast into the reproductive spotlight. In the short period since the discovered link between kisspeptins, the encoded peptides of Kiss1, and fertility, these peptides are now known to be critical for the neuroendocrine control of reproduction. Kisspeptin producing cells in the hypothalamus are poised to become the 'missing link' in the sex steroid feedback control of GnRH secretion. These cells contain all the necessary components to relay information of the sex steroid environment to GnRH neurons, which possess the kisspeptin receptor, GPR54. Sex steroids regulate Kiss1 mRNA, and kisspeptin expression in the hypothalamus, in a manner consistent with both negative and positive feedback control of GnRH. The precise nature of sex steroid effects, in particular those of estrogen, on Kiss1 expression have been extensively studied in the female rodent and ewe. In the arcuate nucleus (ARC) of both species, kisspeptin cells appear to forward signals pertinent to negative feedback regulation of GnRH, although in the ewe it appears this population of Kiss1 cell is also responsible for positive feedback regulation of GnRH at the time of the preovulatory GnRH/LH surge. In rodents, these positive feedback signals appear to be mediated by kisspeptin cells exclusively within the anteroventral periventricular nucleus (AVPV). There are no Kiss1 cells in the ovine AVPV, but there is a population in the preoptic area. The role these preoptic area cells play in the sex steroid feedback regulation of GnRH secretion, if any, is yet to be revealed.  相似文献   

16.
Animals have to adjust their physiology to seasonal changes, in response to variation in food availability, social tactics and reproduction. I compared basal corticosterone and testosterone levels in free ranging striped mouse from a desert habitat, comparing between the sexes, breeding and philopatric non-breeding individuals, and between the breeding and the non-breeding season. I expected differences between breeders and non-breeders and between seasons with high and low food availability. Basal serum corticosterone was measured from 132 different individuals and serum testosterone from 176 different individuals of free living striped mice. Corticosterone and testosterone levels were independent of age, body weight and not influenced by carrying a transmitter. The levels of corticosterone and testosterone declined by approximately 50% from the breeding to the non-breeding season in breeding females as well as non-breeding males and females. In contrast, breeding males showed much lower corticosterone levels during the breeding season than all other classes, and were the only class that showed an increase of corticosterone from the breeding to the non-breeding season. As a result, breeding males had similar corticosterone levels as other social classes during the non-breeding season. During the breeding season, breeding males had much higher testosterone levels than other classes, which decreased significantly from the breeding to the non-breeding season. My results support the prediction that corticosterone decreases during periods of low food abundance. Variation in the pattern of hormonal secretion in striped mice might assist them to cope with seasonal changes in energy demand in a desert habitat.  相似文献   

17.
Most temperate-zone species use photoperiod to coordinate breeding and ensure that offspring are born during favourable conditions. Although photoperiodic influences on the reproductive axis have been well characterized, the precise mechanisms by which photoperiodic information and other seasonal cues are integrated to regulate reproductive function remain less well specified. Two recently discovered neuropeptides, kisspeptin and gonadotropin-inhibitory hormone, have pronounced opposing influences on reproductive function. This paper will review recent evidence for a role of these peptides in seasonal reproduction and propose a theoretical framework by which these novel regulatory peptides may serve to regulate seasonal breeding. Understanding the mechanisms regulating appropriate changes in reproductive status will serve to advance a wide range of life science disciplines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号