首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced catalytic activities of different lignocellulases were obtained from Armillaria gemina under statistically optimized parameters using a jar fermenter. This strain showed maximum xylanase, endoglucanase, cellobiohydrolase, and β-glucosidase activities of 1,270, 146, 34, and 15 U mL?1, respectively. Purified A. gemina xylanase (AgXyl) has the highest catalytic efficiency (k cat/K m?=?1,440 mg?mL?1?s?1) ever reported for any fungal xylanase, highlighting the significance of the current study. We covalently immobilized the crude xylanase preparation onto functionalized silicon oxide nanoparticles, achieving 117 % immobilization efficiency. Further immobilization caused a shift in the optimal pH and temperature, along with a fourfold improvement in the half-life of crude AgXyl. Immobilized AgXyl gave 37.8 % higher production of xylooligosaccharides compared to free enzyme. After 17 cycles, the immobilized enzyme retained 92 % of the original activity, demonstrating its potential for the synthesis of xylooligosaccharides in industrial applications.  相似文献   

2.
Medium composition and culture conditions for the xylanases production by Bacillus mojavensis A21 were optimized using two statistical methods: Plackett-Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and Box-Behnken design used to optimize the value of the four significant variables: barley bran, NaCl, agitation, and cultivation time. The optimal conditions for higher production of xylanases were barley bran 18.66g/l, NaCl 1.04g/l, speed of agitation 176rpm and cultivation time 34.08h. Under these conditions, the xylanase experimental yield (7.45U/ml) closely matched the yield predicted by the statistical model (7.23U/ml) with R(2)=0.98. The medium optimization resulted in a 6.83-fold increase in xylanase production compared to that of the initial medium. Best xylanase activity was observed at the temperature of 50°C and at pH 8.0. The enzyme retained more 96% of its activity after 24h at pH ranges from 7.0 to 90.0. The enzyme preserved more 80% of its initial activity after 60min of pre-incubation from 30°C to 60°C. The main hydrolysis products yielded from corncob extracted xylan were xylobiose and xylotriose, suggesting the good potential of strain A21 in xylooligosaccharides production.  相似文献   

3.
Thermomyces lanuginosus, isolated from self-heated jute stacks in Bangladesh, was studied for production of high level of cellulase-free thermostable xylanase at 50°C using xylan. Optimization of the medium composition was carried out on shake-flask level using Graeco-Latin square technique. This increased xylanase production from 527 nkat ml−1 in the original medium to 9168–9502 nkat ml−1 in the optimized medium under optimized culture conditions e.g. initial medium pH (6.0–6.5), culture temperature (50°C) and time (5–6 d). The lag phase was very much shorter in the laboratory reactor compared to which existed in the shake cultures and 7111 nkat of xylanase activity were obtained per ml of culture filtrate at 60 h of cultivation. With a 15 min reaction time, the optimal pH and temperature for the xylanase activity were at 6.5 and 65°C, respectively. The enzyme was almost stable over a broad range of pH 3–9 at 20°C, with an optimum stability at pH 6.5. After 51 h heating at 50°C the enzyme retained 60%, 100% and 90% activity at pH 5.0, 6.5 and 8.0, respectively. The crude enzyme could hydrolyse xylan effectively and in only 6 h 67.3%, 54.0% and 49.2% saccharifications were achieved for 2%, 5% and 10% substrate levels, respectively. The principal product of hydrolysis was xylobiose together with smaller amounts of xylooligosaccharides (degree of polymerization 3–7) and xylose.  相似文献   

4.
In this study, a thermostable recombinant xylanase B (XynB) from Thermotoga maritima MSB8 was immobilized on nickel-chelated Eupergit C 250L. This immobilized XynB was then used to hydrolyze the autohydrolysis explosion liquor of corncob (AELC) in a packed-bed enzyme reactor for continuous production of xylooligosaccharides, especially xylobiose. When tested in batch hydrolysis of AELC, the immobilized XynB still retained its relative activity of 92.5% after 10 cycles of hydrolysis at 90 degrees C. The immobilized XynB retained 83.6% of its initial hydrolysis activity even after 168 h of hydrolysis reaction at 90 degrees C and demonstrated a half-life time of 577.6 h (24 days) for continuous hydrolysis. HPLC showed that xylobiose (49.8%) and xylose (22.6%) were the main hydrolysis products yielded during continuous hydrolysis. Xylobiose was adsorbed on an activated charcoal column and eluted with a linear gradient of 15% (v/v) ethanol to yield xylobiose with 84.7% of recovery. Also, the purity of xylobiose was up to 97.2% as determined by HPLC. Therefore, the immobilized XynB was suitable for the efficient production of xylobiose from AELC. This is the first report on the immobilization of xylanase for xylobiose production.  相似文献   

5.
The xylosidase bound with mycelia of Streptomyces sp. was a typical inducible enzyme. Xylosidase production was induced by various xylooligosaccharides, xylan, and non-metabolizable β-xylosides. The xylooligasoccharides and xylan induced xylosidase production better than β-xylosides, which induced more xylanase production extracellularly. The induction pattern of xylosidase was considerably different that of xylanase.The crude xylosidase solubilized by toluene and Triton X-100 from mycelial fraction was vary unstable and active on xylooligosaccharides and β-phenylxyloside but was not active on xylan, starch, cellulose, maltose and cellobiose.  相似文献   

6.
Yan QJ  Wang L  Jiang ZQ  Yang SQ  Zhu HF  Li LT 《Bioresource technology》2008,99(13):5402-5410
An extracellular β-xylosidase from the thermophilic fungus Paecilomyces thermophila J18 was purified 31.9-fold to homogeneity with a recovery yield of 2.27% from the cell-free culture supernatant. It appeared as a single protein band on SDS–PAGE with a molecular mass of approx 53.5 kDa. The molecular mass of β-xylosidase was 51.8 kDa determined by Superdex 75 gel filtration. The enzyme was a glycoprotein with a carbohydrate content of 61.5%. It exhibited an optimal activity at 55 °C and pH 6.5, respectively. The enzyme was stable in the range of pH 6.0–9.0 and at 55 °C. The purified enzyme hydrolyzed xylobiose and higher xylooligosaccharides but was inactive against xylan substrates. It released xylose from xylooligosaccharides with a degree of polymerization ranging between 2 and 5. The rate of xylose released from xylooligosaccharides by the purified enzyme increased with increasing chain length. It had a Km of 4.3 mM for p-nitrophenol-β-d-xylopyranoside and was competitively inhibited by xylose with a Ki value of 139 mM. Release of reducing sugars from xylans by a purified xylanase produced by the same organism increased markedly in the presence of β-xylosidase. During 24-hour hydrolysis, the amounts of reducing sugar released in the presence of added β-xylosidase were about 1.5–1.73 times that of the reaction employing the xylanase alone. This is the first report on the purification and characterization of a β-xylosidase from Paecilomyces thermophila.  相似文献   

7.
A thermo stable xylanase was purified from Streptomyces thermocyaneoviolaceus M049 for the production of xylooligosaccharides from xylan. The enzyme showed thermostability by maintaining 65% of remaining enzyme activity after 1 h heat treatment at 70°C. The molecular weight of the purified protein was 35 kDa in SDS-PAGE, and the optimal pH and temperature for the enzymatic activity were pH 5.0 and 60°C, respectively. N-terminal amino acid sequences of the purified xylanase, DTITSNQTGTHNGYF, were similar to StxII from S. Thermoviolaceus and XlnB from S. lividans. Using those two genes, stxll and xlnB as probe DNA, a gene encoding xylanase, xynB, was cloned from genomic library of S. thermocyaneoviolaceus M049. The open reading frame of the xynB was composed of 1008 nucleotide sequences. Compared to N-terminal sequences from purified enzyme, it was proposed that the XynB contained a 40 amino acid long signal peptide to the N-terminus. For easy production and purification, a XynB overproduction strain was constructed using pET21a(+) and strain E. coli BLR(DE3). Consequently, the recombinant enzyme was tested for the production of xylooligosaccharides through TLC and HPLC analyses.  相似文献   

8.
An extracellular thermostable xylanase produced by Saccharopolyspora pathumthaniensis S582 was purified 167-fold to homogeneity with a recovery yield of 12%. The purified xylanase appeared as a single protein band on SDS-PAGE, with a molecular mass of 36 kDa. The optimal temperature and pH of the xylanase were 70 °C and 6.5. The enzyme was stable within a pH range of 5.5-10.0. It retained its activity after incubation at 50 °C for 2 h. Its half lives at temperatures of 60 and 70 °C were 180 and 120 min respectively. Hydrolysis of beechwood xylan by the xylanase yielded xylobiose and xylose as major products. The enzyme acted specifically on xylan as an endo-type xylanase, and exhibited a K(m) value of 3.92 mg/mL and a V(max) value of 256 μmol/min/mg. Enzyme activity was completely inhibited by Hg(2+), and was stimulated by Rb(+) and Cs(+). The xylanase gene was cloned from genomic DNA of Saccharopolyspora pathumthaniensis S582 and sequenced. The ORF consisted of 1,107 bp and encoded 368 amino acid residues containing a putative signal peptide of 23 residues. This xylanase is a new member of family (GH) 10 that shows highest identity, of 63.4%, with a putative xylanase from Nocardiopsis dassonvillei subsp. dassonvillei.  相似文献   

9.
A xylanase gene from Paecilomyces thermophila was functionally expressed in Pichia pastoris. The recombinant xylanase (xynA) was predominantly extracellular; in a 5?l fermentor culture, the total extracellular protein was 8.1?g?l?1 with an activity of 52,940?U?ml?1. The enzyme was purified to homogeneity with a recovery of 48?%. The recombinant xynA was optimally active at 75?°C, as measured over 10?min, and at pH 7. The enzyme was stable up to 80?°C for 30?min. It hydrolyzed birchwood xylan, beechwood xylan and xylooligosaccharides to produce xylobiose and xylotriose as the main products.  相似文献   

10.
低聚木糖的提取工艺及相对分子质量分布   总被引:1,自引:0,他引:1  
通过单因素试验和正交试验研究低聚木糖的提取条件,使用凝胶树脂对低聚木糖粗提液进行分离,采用高效液相色谱法测定了低聚木糖的相对分子质量分布。低聚木糖的最佳提取条件:在底物质量浓度为100 g/L的情况下,加酶量1 000 U/g,酶解温度55℃,提取时间为4 h。在此条件下,提取的平均聚合度为3.12,高效液相色谱测定结果发现,低聚木糖主要是由木二糖、木三糖以及4~8个聚合度的糖组成。  相似文献   

11.
The Paenibacillus curdlanolyticus xyn10B gene encoding a family-10 xylanase was cloned and expressed in Escherichia coli, and the recombinant enzyme rXyn10B was characterized. Immunological analysis suggested that Xyn10B is an intracellular enzyme. rXyn10B hydrolyzed birch-wood xylan and xylooligosaccharides to produce mainly xylobiose, suggesting that it is an endoxylanase. Its properties were significantly different from those of some homologous enzymes.  相似文献   

12.
An extracellular xylanase produced by Streptomyces matensis DW67 was purified from the culture supernatant by ammonium sulfate precipitation, ion exchange and gel filtration chromatography and characterized. The xylanase was purified to 14.5-fold to homogeneity with a recovery yield of 14.1%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of 21.2 kDa. However, it had a very low apparent molecular mass of 3.3 kDa as determined by gel filtration chromatography. The N-terminal sequence of first 15 amino acid residues was determined as ATTITTNQTGYDGMY. The optimal temperature and pH for purified xylanase was 65 °C and pH 7.0, respectively. The enzyme was stable within the pH range of 4.5–8.0 and was up to 55 °C. The xylanase showed specific activity towards different xylans and no activity towards other substrates tested. Hydrolysis of birchwood xylan by the xylanase yielded xylobiose and xylotriose as principal products. The enzyme hardly hydrolyzed xylobiose and xylotriose, but it could hydrolyze xylotetraose and xylopentaose to produce mainly xylobiose and xylotriose through transglycosylation. These unique properties of the purified xylanase make this enzyme attractive for biotechnological applications, such as bioblenching in paper and pulp industries, production of xylooligosaccharides. This is the first report of the xylanase from S. matensis.  相似文献   

13.
筛选和鉴定可降解木质纤维素的真菌,并研究其产酶特征。采用刚果红平板涂布法,从荔枝腐叶中筛选具有木质纤维素降解能力的真菌,结合ITS-rDNA序列分析进行鉴定,初步测定其产酶条件,然后采用DEAE Sepharose Fast Flow阴离子交换层析与Sephadex G-100凝胶层析对硫酸铵沉淀的粗酶液进行分离纯化,对其开展酶学性质研究。结果显示,筛选出一株可降解木质纤维素降解的菌株YB,鉴定为绿木霉(Trichoderma virens)。在发酵过程中,纤维素酶和木聚糖酶的最大活力分别为313.53±26.78 U/mL和18 120.87±500.37 U/mL。分离纯化得到纤维素酶(CMC酶)Ⅰb、Ⅳ和木聚糖酶Ⅰa;通过SDS-PAGE检测,其分子量分别为58.5 kD、22.8 kD和44.5 kD。3种酶的最适酶促反应条件均为:50℃,pH 5.0。其中,木聚糖酶能有效降解玉米芯木聚糖为木糖和多种木寡糖。菌株Trichoderma virens YB可分泌高效木质纤维素降解酶,具有应用于木聚糖酶和木寡糖生产的潜力。  相似文献   

14.
A thermostable xylanase gene, xyn10A (CAP0053), was cloned from Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the C. acetobutylicum xyn10A gene encoded a 318-amino-acid, single-domain, family 10 xylanase, Xyn10A, with a molecular mass of 34 kDa. Xyn10A exhibited extremely high (92%) amino acid sequence identity with Xyn10B (CAP0116) of this strain and had 42% and 32% identity with the catalytic domains of Rhodothermus marinus xylanase I and Thermoascus aurantiacus xylanase I, respectively. Xyn10A enzyme was purified from recombinant Escherichia coli and was highly active toward oat-spelt and Birchwood xylan and slightly active toward carboxymethyl cellulose, arabinogalactouronic acid, and various p-nitrophenyl monosaccharides. Xyn10A hydrolyzed xylan and xylooligosaccharides larger than xylobiose to produce xylose. This enzyme was optimally active at 60°C and had an optimum pH of 5.0. This is one of a number of related activities encoded on the large plasmid in this strain.  相似文献   

15.
微生物发酵产木聚糖酶研究进展   总被引:2,自引:0,他引:2  
木聚糖是植物半纤维素的主要成分,是自然界中仅次于纤维素的可再生资源。木聚糖酶是一类重要的木糖苷键水解酶酶系,可将木聚糖逐次降解为低聚木糖及木糖,在饲料、造纸、食品和生物转化等行业应用广泛。目前利用微生物发酵生产木聚糖酶的研究很多,菌种涉及到细菌、真菌等,其发酵生产木聚糖酶的工艺、产量及特性也各有不同,对此进行了综述,并展望了木聚糖酶发酵生产的研究方向。  相似文献   

16.
The thermostability of beta-xylanases produced by nine thermophilic Thermomyces lanuginosus strains in a coarse corn cob medium was assessed. The xylanase produced by T. lanuginosus strain SSBP retained 100% of its activity after 6 h at temperatures up to 65 degrees C. In comparison seven ATCC strains and the DSM 5826 strain of T. lanuginosus only retained 100% xylanase activity at temperatures up to 60 degrees C. Culture filtrates of T. lanuginosus strain SSBP grown on coarse corn cobs, oatspelts xylan, birchwood xylan, wheatbran, locust beangum, and sugar cane bagasse, retained 100% xylanase activity at temperatures up to 60 degrees C. The xylanase produced on corn cobs was the most thermostable and showed an increase of approximately 6% from 70 degrees C to 80 degrees C. The T(1/2) of all strains at 70 degrees C at pH 6.5 varied greatly from 63 min for strain ATCC 28083 to 340 min for strain SSBP. The xylanase of strain SSBP was much less thermostable at pH 5.0 and pH 12.0 with T(1/2) values of 11.5 min and 15 min, respectively at 70 degrees C. At 50 degrees C, the enzyme of T. lanuginosus strain SSBP produced on coarse corn cobs was stable within the pH range of 5.5-10.0. Furthermore, the enzyme retained total activity at 60 degrees C for over 14 days and at 65 degrees C for over 48 h. The xylanase of T. lanuginosus strain SSBP possesses thermo- and pH stability properties that may be attractive to industrial application.  相似文献   

17.
Summary Maximum xylanase production byChaetomium cellulolyticum was obtained in the culture supernatant after 30 h of growth at 37°C in basal medium containing 1% xylan at pH maintained between 6.5 and 7.5. Addition of 0.05% Tween 80 to the medium increased the enzyme production considerably. Xylanase production was found to be growth associated. The optimal conditions for enzymatic hydrolysis of xylan were found to be pH 6.0 and 50°C. During enzymatic hydrolysis, xylose, xylobiose and other xylooligosaccharides were liberated from xylan. The pH values for xylanase production and for xylan hydrolysis were closely related to the utilization of hemicelluloses of aspen wood for fungal protein production by this organism as reported in our earlier work.  相似文献   

18.
The Paenibacillus curdlanolyticus xyn10B gene encoding a family-10 xylanase was cloned and expressed in Escherichia coli, and the recombinant enzyme rXyn10B was characterized. Immunological analysis suggested that Xyn10B is an intracellular enzyme. rXyn10B hydrolyzed birch-wood xylan and xylooligosaccharides to produce mainly xylobiose, suggesting that it is an endoxylanase. Its properties were significantly different from those of some homologous enzymes.  相似文献   

19.
A high titre of thermo-alkali-stable xylanase was attained in cane molasses medium. When the culture variables for endoxylanase production were optimized [cane molasses 7 %, soluble alkaline extract of wheat bran (SAE-WB) 37 % and ammonium chloride 0.30 %], a 4.5-fold enhancement in xylanase production (69 U ml?1) was achieved as compared to that in the unoptimized medium (15 U ml?1). The enzyme titre attained in shake flasks could be sustained in a 7-l laboratory bioreactor. An activity band corresponding to 40 kDa was visualized on SDS-PAGE zymogram analysis. The enzyme has broad range of pH and temperature for activity with optima at 9.0 and 80 °C, and stable between pH 4.0 and 11.0 with 85 % retention of activity. It has T 1/2 of 40 and 15 min at 70 and 80 °C. The enzyme is halotolerant since it displays activity in the presence of salt up to 15 %, and remains 100 % active in the absence of salt. The supplementation of whole wheat dough with xylanase improves antistaling property, reducing sugar content, bread volume with prebiotic xylooligosaccharides in bread. This is the first report on xylanase production in cane molasses medium with SAE-WB as the inducer and its applicability in whole wheat bread making that improves human health.  相似文献   

20.
Summary The endoxylanase (1,4-D-xylan xylanohydrolase, EC 3.2.1.8) was purified 3,7 fold from the culture filtrate of the yeast Trichosporon cutaneum grown on oathusk xylan. The final enzyme preparation gave a single protein band on disc gel electrophoresis and has a molecular weight of approx. 45000. The enzyme has a pH optimum of 5.0 and a temperatur optimum of 50°C. Patterns of hydrolysis demonstrate that this xylanase is an endo-splitting enzyme able to break down xylans at random giving xylobiose, xylotriose and xylose as the main end-products. Since the enzyme seems not to be capable of liberating L-arabinose from arabino-xylan branched arabinose-containing xylooligosaccharides are formed, too. This enzyme contains carbohydrates in a noncovalent manner, indicating that this extracellular xylanase, is not a glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号