首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastic modulus and stress-transfer properties of tunicate cellulose whiskers   总被引:10,自引:0,他引:10  
Experimental deformation micromechanics of natural cellulose fibers using Raman spectroscopy and X-ray diffraction have been widely reported. However, little has been published on the direct measurements of the mechanical properties, and in particular the elastic modulus, of the highly crystalline material in the native state. Here we report on measurements of the elastic modulus of tunicate cellulose using a Raman spectroscopic technique. A dispersed sample of the material is deformed using a four-point bending test, and a shift in a characteristic Raman band (located at 1095 cm(-1)) is used as an indication of the stress in the material. Relatively little intensity change of the Raman band located at 1095 cm(-1) is shown to occur for samples oriented parallel and perpendicular to the polarization direction of the laser, as compared to a highly oriented flax sample. This indicates that the tunicate sample is a two-dimensional in-plane random network of fibers. By use of this result, the Raman shift, and calibrations with strain from other materials, it is shown that the modulus of the material is very high, at about 143 GPa, and a lack of Raman band broadening is thought to be due to the fact that there is pure crystalline deformation occurring without the effect of crystalline/amorphous fractions. A strain sensitivity of the shift in the 1095-cm(-1) Raman peak for this specimen is shown to be -2.4 +/- 0.2 cm(-1)/%. A molecular mechanics approach, using computer simulation and an empirical force field, was used to predict the modulus of a highly oriented chain of the material, and this is found to be 145 GPa, which is in agreement with the experimental data. However, by use of a normal-mode analysis, it is found that a number of modes have positions close to the central positions of the experimental Raman band. One in particular is found to shift at a rate of 2.5 cm(-1)/%, but due to the complex nature of the structure, it is not entirely conclusive that this band is representative of the experimental findings.  相似文献   

2.
Tsuboi M  Suzuki M  Overman SA  Thomas GJ 《Biochemistry》2000,39(10):2677-2684
Raman spectra of oriented alpha-helical protein molecules exhibit a prominent band near 1340-1345 cm(-)(1), the intensity of which is highly sensitive to molecular orientation. Polarization of the 1340-1345 cm(-)(1) marker is evident in Raman spectra of alpha-helical poly-L-alanine (alphaPLA) and alpha-helical poly-gamma-benzyl-L-glutamate (alphaPBLG). Corresponding polarization is also observed in Raman spectra of the filamentous virus Pf1, which is an assembly of alpha-helical coat protein molecules. In alphaPLA and alphaPBLG, we assign the band to a normal mode of symmetry type E(2) and specifically to a vibration localized in the (O=C)-C(alpha)-H linkages of the main chain peptide group. Although strict helical symmetry does not apply to coat subunits of filamentous viruses, an approximate E(2)-type mode may be presumed to account for a corresponding Raman band of Pf1 and fd filamentous viruses. Spectroscopic studies of N-methylacetamide and isotopically-edited fd viruses support the present assignment of the 1340-1345 cm(-)(1) band. Polarization anisotropy indicates that this band may be exploited as a novel indicator of protein alpha-helix orientation. Application of this approach to the polarized Raman spectrum of Pf1 suggests that, on average, the axis of the alpha-helical coat protein subunit in the native virion structure forms an angle of 20 +/- 10 degrees with respect to the virion axis.  相似文献   

3.
The net orientation of cellulose fibrils in the outer epidermal wall of the root elongation zone of 57 angiosperm species belonging to 29 families was determined by means of Congo Red fluorescence and polarization confocal microscopy. The angiosperms can be divided in three groups. In all but four plant families, the net orientation of the cellulose fibrils is transverse to the root axis. Three families, the Poaceae, Juncaceae and Cyperaceae, have a totally different organization. In the root elongation zone of these plants, the net orientation of cellulose fibrils in the outer epidermal wall is parallel with the root axis. In roots of one family, the Arecaceae, an elongation zone in the literal sense of the word is absent and cellulose fibrils are randomly oriented.  相似文献   

4.
Keratin orientation in wool and feathers by polarized raman spectroscopy   总被引:2,自引:0,他引:2  
Good quality polarized Raman spectra of a single wool fiber and an intact feather barbule are presented. The intensity ratio of the alpha-helix component of the amide I band measured parallel and perpendicular to the wool fiber axis was 0.39 +/- 0.05. This is consistent with theoretical predictions based on orientational calculations using the normal Raman polarizability tensor for an alpha-helical amide I band where the protein strands are aligned roughly parallel with the fiber axis. However, the depolarized spectral intensity of the alpha-helix mode was greater than expected. For the feather barbule, despite high quality spectra, a unique orientation of the beta-sheet structure could not be determined using the Raman intensity ratios of the amide I band alone. Using previously developed methods, the protein chains were found to be oriented between 60 and 90 degrees from the long axis of the barbule compared to an angle of 51 degrees calculated from polarized IR spectra of the same barbule. The Raman tensor methods for the determination of protein orientation in these fibers was found to be constrained by the complexity of the materials and the limitations of the band fitting methods used to apportion the intensity among the various vibrational modes of their spectra. Other advantages and limitations of polarized Raman microscopic methods of structural determination are discussed.  相似文献   

5.
Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced. The CNWs are found to orient under the action of the magnetic field, leading to enhanced stiffness and strength of the composites, but not to the level that is theoretically predicted for a fully aligned system. Lowering the volume fraction of the CNWs is shown to allow them to orient more readily in the magnetic field, leading to larger relative increases in the mechanical properties. It is shown, using polarized light microscopy, that the all-cellulose composites have a domain structure, with some domains showing pronounced orientation of CNWs and others where no preferred orientation occurs. Raman spectroscopy is used to both follow the position of bands located at ~1095 and ~895 cm(-1) with deformation and also their intensity as a function rotation angle of the specimens. It is shown that these approaches give valuable independent information on the respective molecular deformation and orientation of the CNWs, and the molecules in the matrix phase, in oriented and nonoriented domains of all-cellulose composites. These data are then related to an increase in the level of molecular deformation in the axial direction, as revealed by the Raman technique. Little orientation of the matrix phase is observed under the action of the magnetic field indicating the dominance of the stiff CNWs in governing mechanical properties.  相似文献   

6.
Polarization‐resolved Raman microspectroscopy with near‐infrared laser excitation was applied to intact human hair in order to non‐invasively investigate the conformation and orientation of the polypeptide chains. By varying the orientation of the hair shaft relative to the polarization directions of the laser/analyzer, a set of four polarized Raman spectra is obtained; this allows to simultaneously determine both the secondary structure of hair proteins and the orientation of the polypeptide strands relative to the axis of the hair shaft. For the amide I band, results from a quantitative analysis of the polarized Raman spectra are compared with theoretically expected values for fibers with uniaxial symmetry. Based on the polarization behavior of the amide I band and further vibrational bands, a partial ordering of α‐helical polypeptide strands parallel to the hair shaft can be concluded. We suggest that this microspectroscopic approach may be used for human hair diagnostics by detecting structural or orientational alterations of keratins. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Raman spectra were acquired in situ during tensile straining of mechanically isolated fibers of spruce latewood. Stress-strain curves were evaluated along with band positions and intensities to monitor molecular changes due to deformation. Strong correlations (r = 0.99) were found between the shift of the band at 1097 cm(-1) corresponding to the stretching of the cellulose ring structure and the applied stress and strain. High overall shifts (-6.5 cm(-1)) and shift rates (-6.1 cm(-1)/GPa) were observed. After the fiber failed, the band was found on its original position again, proving the elastic nature of the deformation. Additionally, a decrease in the band height ratio of the 1127 and 1097 cm(-1) bands was observed to go hand in hand with the straining of the fiber. This is assumed to reflect a widening of the torsion angle of the glycosidic C-O-C bonding. Thus, the 1097 cm(-1) band shift and the band height ratio enable one to follow the stretching of the cellulose at a molecular level, while the lignin bands are shown to be unaffected. Observed changes in the OH region are shown and interpreted as a weakening of the hydrogen-bonding network during straining. Future experiments on different native wood fibers with variable chemical composition and cellulose orientation and on chemically and enzymatically modified fibers will help to deepen the micromechanical understanding of plant cell walls and the associated macromolecules.  相似文献   

8.
Raman microspectroscopy has been used for the first time to determine quantitatively the orientation of the beta-sheets in silk monofilaments from Bombyx mori and Samia cynthia ricini silkworms, and from the spider Nephila edulis. It is shown that, for systems with uniaxial symmetry such as silk, it is possible to determine the order parameters P2 and P4 of the orientation distribution function from intensity ratios of polarized Raman spectra. The equations allowing the calculation of P2 and P4 using polarized Raman microspectroscopy for a vibration with a cylindrical Raman tensor were first derived and then applied to the amide I band that is mostly due to the C=O stretching vibration of the peptide groups. The shape of the Raman tensor for the amide I vibration of the beta-sheets was determined from an isotropic film of Bombyx mori silk treated with methanol. For both the Bombyx mori and Samia cynthia ricini fibroin fibers, the values of P2 and P4 obtained are equal to -0.36 +/- 0.03 and 0.19 +/- 0.02, respectively, even though the two types of silkworm fibroins strongly differ in their primary sequences. For the Nephila edulis dragline silk, values of P2 and P4 of -0.32 +/- 0.02 and 0.13 +/- 0.02 were obtained, respectively. These results clearly indicate that the carbonyl groups are highly oriented perpendicular to the fiber axis and that the beta-sheets are oriented parallel to the fiber axis, in agreement with previous X-ray and NMR results. The most probable distribution of orientation was also calculated from the values of P2 and P4 using the information entropy theory. For the three types of silk, the beta-sheets are highly oriented parallel to the fiber axis. The orientation distributions of the beta-sheets are nearly Gaussian functions with a width of 32 degrees and 40 degrees for the silkworm fibroins and the spider dragline silk, respectively. In addition to these results, the comparison of the Raman spectra recorded for the different silk samples and the polarization dependence of several bands has allowed to clarify some important band assignments.  相似文献   

9.
Spetzler D  York J  Daniel D  Fromme R  Lowry D  Frasch W 《Biochemistry》2006,45(10):3117-3124
A novel method for detecting F(1)-ATPase rotation in a manner sufficiently sensitive to achieve acquisition rates with a time resolution of 2.5 micros (equivalent to 400,000 fps) is reported. This is sufficient for resolving the rate at which the gamma-subunit travels from one dwell state to another (transition time). Rotation is detected via a gold nanorod attached to the rotating gamma-subunit of an immobilized F(1)-ATPase. Variations in scattered light intensity allow precise measurement of changes in the angular position of the rod below the diffraction limit of light. Using this approach, the transition time of Escherichia coli F(1)-ATPase gamma-subunit rotation was determined to be 7.62 +/- 0.15 (standard deviation) rad/ms. The average rate-limiting dwell time between rotation events observed at the saturating substrate concentration was 8.03 ms, comparable to the observed Mg(2+)-ATPase k(cat) of 130 s(-)(1) (7.7 ms). Histograms of scattered light intensity from ATP-dependent nanorod rotation as a function of polarization angle allowed the determination of the nanorod orientation with respect to the axis of rotation and plane of polarization. This information allowed the drag coefficient to be determined, which implied that the instantaneous torque generated by F(1) was 63.3 +/- 2.9 pN nm. The high temporal resolution of rotation allowed the measurement of the instantaneous torque of F(1), resulting in direct implications for its rotational mechanism.  相似文献   

10.
Vibrational spectroscopy using polarized incident radiation can be used to determine the orientation of X-H bonds with respect to coordinates such as crystallographic axes. The adaptation of this approach to polymer fibers is described here. It requires spectral intensity to be quantified around a 180 degrees range of polarization angles and not just recorded transversely and longitudinally as is normal in fiber spectroscopy. Mercerized cellulose II is used as an example. The unit cell of the cellulose II lattice contains six distinct hydroxyl groups engaged in a complex network of hydrogen bonds that hold the cellulose chains laterally together. A formalism is described to relate the variation in intensity of each O-H stretching mode to the angle between its transition moment and the chain axis as the polarization axis is rotated with respect to the fiber axis. It was necessary to include the effect of dispersion in chain orientation around the mean and the averaging of all rotational positions of the chains round their axis. The two crystallographically distinct O(2)-H groups, which are each hydrogen-bonded to only one acceptor oxygen, show a close match in orientation between the transition moments of their stretching bands and the O-H bond axis. The two O(3)-H groups each have a three-centered hydrogen bond to O-5 and O-6 of the next residue in the same chain. The transition moments of their stretching modes lay between the acceptor oxygens. Hydrogen bonding from the O(6)-H groups is still more complex but again the transition moment of each O-H bond lay within the cone of orientations described by the acceptor oxygens, provided that one additional acceptor oxygen excluded from the published crystal structure was considered. The transition moments for the O-H stretching modes were approximately aligned with the O-H bond axes, but the alignment was not necessarily exact. This approach is not restricted to hydroxyl groups, but it is particularly useful for the elucidation of hydrogen bonding in fibrous polymers for which crystallographic data on proton positions are not available.  相似文献   

11.
The orientation of cellulose microfibrils (MFs) and the arrangement of cortical microtubules (MTs) in the developing tension-wood fibres of Japanese ash (Fraxinus mandshurica Rupr. var. japonica Maxim.) trees were investigated by electron and immunofluorescence microscopy. The MFs were deposited at an angle of about 45° to the longitudinal axis of the fibre in an S-helical orientation at the initiation of secondary wall thickening. The MFs changed their orientation progressively, with clockwise rotation (viewed from the lumen side), from the S-helix until they were oriented approximately parallel to the fibre axis. This configuration can be considered as a semihelicoidal pattern. With arresting of rotation, a thick gelatinous (G-) layer was developed as a result of the repeated deposition of parallel MFs with a consistent texture. Two types of gelatinous fibre were identified on the basis of the orientation of MFs at the later stage of G-layer deposition. Microfibrils of type 1 were oriented parallel to the fibre axis; MFs of type 2 were laid down with counterclockwise rotation. The counterclockwise rotation of MFs was associated with a variation in the angle of MFs with respect to the fibre axis that ranged from 5° to 25° with a Z-helical orientation among the fibres. The MFs showed a high degree of parallelism at all stages of deposition during G-layer formation. No MFs with an S-helical orientation were observed in the G-layer. Based on these results, a model for the orientation and deposition of MFs in the secondary wall of tension-wood fibres with an S1 + G type of wall organization is proposed. The MT arrays changed progressively, with clockwise rotation (viewed from the lumen side), from an angle of about 35–40° in a Z-helical orientation to an angle of approximately 0° (parallel) to the fibre axis during G-layer formation. The parallelism between MTs and MFs was evident. The density of MTs in the developing tension-wood fibres during formation of the G-layer was about 17–18 per m of wall. It appears that MTs with a high density play a significant role in regulating the orientation of nascent MFs in the secondary walls of wood fibres. It also appears that the high degree of parallelism among MFs is closely related to the parallelism of MTs that are present at a high density.Abbreviations FE-SEM field emission scanning electron microscopy - G gelatinous layer - MF cellulose microfibril - MT cortical microtubule - S1 outermost layer of the secondary wall - TEM transmission electron microscopy We thank Dr. Y. Akibayashi, Mr. Y. Sano and Mr. T. Itoh of the Faculty of Agriculture, Hokkaido University, for their experimental or technical assistance.  相似文献   

12.
Experimental deformation micromechanics of regenerated cellulose fibers using Raman spectroscopy have been widely reported. Here we report on computer modeling simulations of Raman band shifts in modes close to the experimentally observed 1095 cm(-1) band, which has previously been shown to shift toward a lower wavenumber upon application of external fiber deformation. A molecular mechanics approach is employed using a previously published model structure of cellulose II. Changing the equilibrium c-spacing of this structure and then performing a minimization routine mimics tensile deformation. Normal-mode analysis is then performed on the minimized structure to predict the Raman-intensive vibrations. By using a dot-product analysis on the predicted eigenvectors it is shown that some Raman active modes close to the 1095 cm(-1) band interchange at certain strain levels. Nevertheless, when this is taken into account it is shown that it is possible to find reasonable agreement between theory and experiment. The effect of the experimentally observed broadening of the Raman bands is discussed in terms of crystalline and amorphous regions of cellulose, and this is compared to the lack of X-ray broadening to explain why discrepancies between theory and experiment are present. A hybrid model structure with a series-parallel arrangement of amorphous and misaligned amorphous-crystalline domains is proposed which is shown to agree with what is observed experimentally. Finally, the theoretical crystal modulus for cellulose II is reported as 98 GPa, which is shown to be in agreement with other studies and with an experimental measurement using synchrotron X-ray diffraction.  相似文献   

13.
Measurement of the elastic properties of single osteon lamellae is still one of the most demanding tasks in bone mechanics to be solved. By means of site-matched Raman microspectroscopy, acoustic microscopy and nanoindentation the structure, chemical composition and anisotropic elasticity of individual lamellae in secondary osteons were investigated. Acoustic impedance images (911-MHz) and two-dimensional Raman spectra were acquired in sections of human femoral bone. The samples were prepared with orientations at various observation angles theta relative to the femoral long axis. Nanoindentations provided local estimations of the elastic modulus and landmarks necessary for spatial fusion of the acoustic and spectral Raman images. Phosphate nu(1) (961 cm(-1)) and amide I (1665 cm(-1)) band images representing spatial distributions of mineral and collagen were fused with the acoustic images. Acoustic impedance was correlated with the indentation elastic modulus E(IT) (R(2)=0.61). Both parameters are sensitive to elastic tissue anisotropy. The lowest values were obtained in the direction perpendicular to the femoral long axis. Acoustic images exhibit a characteristic bimodal lamellar pattern of alternating high and low impedance values. Since this undulation was not associated with a variation of the phosphate nu(1)-band intensity in the Raman images, it was attributed to variations of the lamellar orientation. After threshold segmentation and conversion to elastic modulus the orientation and transverse isotropic elastic constants were derived for individual ensembles of apparent thin and thick lamellae. Our results suggest that this model represents the effective anisotropic properties of an asymmetric twisted plywood structure made of transverse isotropic fibrils. This is the first report that proves experimentally the ability of acoustic microscopy to map tissue elasticity in two dimensions with micrometer resolution. The combination with Raman microspectroscopy provides a unique way to study bone and mineral metabolism and the relation with mechanical function at the ultrastructural tissue level.  相似文献   

14.
Cao Y  Shen D  Lu Y  Huang Y 《Annals of botany》2006,97(6):1091-1094
BACKGROUND AND AIMS: Raman spectroscopy can be used to examine the orientation of biomacromolecules using relatively thick samples of material, whereas more traditional means of analysing molecular structure require prior isolation of the components, which often destroys morphological features. In this study, Raman spectroscopy was used to examine the outer epidermal cell walls of wheat stems. METHODS: Polarized Raman spectra from the epidermal cell walls of wheat stem were obtained using near-infrared-Fourier transform Raman scattering. By comparing spectra taken with Raman light polarized perpendicular or parallel to the longitudinal axis of the cell, the orientation of macromolecules in the cell wall was investigated. KEY RESULTS: The net orientation of macromolecules varies in the epidermal cell walls of the different components of wheat stem. The net orientation of cellulose is parallel to the longitudinal axis of the cells, whereas the xylan and the phenylpropane units of lignin tend to lie perpendicular to the longitudinal axis of the cells, i.e. perpendicular to the net orientation of cellulose in the epidermal cell walls. CONCLUSIONS: The results imply that cellulose, lignin and xylan form a relatively ordered network that defines the mechanical and structural properties of the cell wall. Such results are likely to have a significant impact on the formulation of definitive models for the static and growing cell wall.  相似文献   

15.
The properties of cellulose materials are highly dependent on the interactions between and within the cellulose chains mainly related to inter- and intramolecular hydrogen bonds. To investigate the deformation behavior of cellulose and its relation to molecular straining, cellulose sheets with different fiber orientations were studied by dynamic FTIR spectroscopy. The sheets were stretched sinusoidally at low strains while being irradiated with polarized infrared light. It is shown that the polarization direction determines the dynamic IR response to a higher extent than the fiber direction in the sample sheets. Different polarization modes give different dynamic signals, allowing conclusions to be drawn on the structural orientation of submolecular groups in the cellulose molecules. The bands in the spectra mainly affected by the deformation of the sheets were derived from skeletal vibrations that include the C-O-C bridge connecting adjacent rings and from the hydrogen bonds. The conclusion that these groups are the ones that are mainly deformed under load has thereby experimentally demonstrated the theoretical calculations from Tashiro and Kobayashi [Tashiro, K.; Kobayashi, M. Polymer 1991, 32, 1516-1526].  相似文献   

16.
Two different homogenous reactions on bacterial cellulose (BC), kenaf fiber (KF) and microcrystalline cellulose (MC) were performed to monitor their chemical reactivity. The first reaction was selective oxidation of the primary hydroxyl group with sodium chlorite in the presence of catalytic amount of sodium chloride. While, the second was the formation of triester hypoiodous cellulose using potassium iodate and potassium iodide. The chemical structures of these derivatives were investigated using FT-IR and solid state 13C NMR spectroscopies. The BC fibrils required the shortest time among these cellulose samples for both reactions, whereas the viscosity values of BC after iodination and oxidation have the best values compared to KF and MC. FT-IR results show the absence of the hydroxy group of BC and a weak absorption band in both KF and MC. On the other hand, the crystallinity index (CI) of BC is higher than those of both KF and MC. FT-IR spectra of the oxidized different cellulose samples, confirmed the presence of a strong absorption band at around 1590 cm−1 that attributed to vibration band of carbonyl group of carboxylic moiety. Moreover, in the 13C NMR spectrum of oxidized cellulose, the lack of signal at 62 ppm and the appearance of signal at 171 ppm indicated that the primary alcohol group is completely oxidized to carboxylic acid. These results showed that BC had a higher reactivity than other samples due to its great purity and low degree of polymerization.  相似文献   

17.
The role of cellulose microfibril orientation in determining cell wall mechanical anisotropy and in the control of the wall plastic versus elastic properties was studied in the adaxial epidermis of onion bulb scales using the constant-load (creep) test. The mean or net cellulose orientation in the outer periclinal wall of the epidermis was parallel to the long axis of the cells. In vitro cell wall extensibility was 30-90% higher in the direction perpendicular to the net microfibril orientation than parallel to it. This was the case for the size of the initial deformation occurring just after the load application and for the rate of time-dependent creep. Loading/unloading experiments confirmed the presence of a real irreversible component in cell wall extension. The plastic component of the time-dependent deformation was higher perpendicular to the net cellulose orientation than parallel to it. An acid buffer (pH 4.5) increased the creep rate by 25-30% but this response was not related to cellulose orientation. The present data provide direct evidence that the net orientation of cellulose microfibrils confers mechanical anisotropy to the walls of seed plants, a characteristic that may be relevant to understanding anisotropic cell growth.  相似文献   

18.
Absorption spectra of large, well-formed crystals of cytosolic aspartate aminotransferase have been recorded using plane polarized light. Making use of measurements of crystal thickness we have calculated extinction coefficients with the electric vector of the light parallel to both the a and c axes of the crystals of the enzyme in space group P2(1)2(1)2(1). The spectra have been resolved into components with lognormal distribution curves and the resulting integrated intensities have been used to calculate the c/a polarization ratios for the absorption bands of the bound co-enzyme pyridoxal 5'-phosphate. From the polarization ratio and the co-ordinates of the co-enzyme ring atoms, provided by X-ray crystallography, we have assigned principal molecular directions of the transition dipole moment within the plane of the co-enzyme ring. Of two possible orientations, only one predicts the correct crystal extinction coefficients for the 436 nm band. In this orientation, when viewed from the B face of the ring (i.e. looking into the active site of the enzyme), the transition moment is related to the N-1-C-4 axis of the ring by counterclockwise rotation by 27 degrees. A tentative assignment of the principal molecular directions of the transition moment has also been made for the 368 nm band of the high pH form of the enzyme. In each case, the plane of the co-enzyme ring was located from the atomic co-ordinates of the ring atoms and of those atoms attached directly to the ring. The projection of the N-1 to C-4 axis on to this plane was used to evaluate the orientation of the transition moment, which was presumed to lie precisely within the plane of the ring. We have tilted this plane systematically to evaluate the error in transition moment direction resulting from uncertainties in the atomic co-ordinates. When 2-methylaspartate is diffused into the crystals if forms a Schiff base with the co-enzyme in which the ring has tilted about 32 degrees from its original position and the polarization ratio of the 436 nm band drops from 1.6 in the free enzyme to about 0.38. On the assumption that the orientation of the transition moment within the co-enzyme does not change during this rotation, this value of the polarization ratio is within experimental error of that predicted from X-ray structures on the two forms. The 2-methylaspartate binds only to subunit 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Orientational distribution of actin filaments within a cell is an important determinant of cellular shape and motility. To map this distribution we developed a method of measuring local orientation of actin filaments. In this method actin filaments within cells are labeled with fluorescent phalloidin and are viewed at high magnification in a fluorescent microscope. Emitted fluorescence is split by a birefringent crystal giving rise to two images created by light rays polarized orthogonally with respect to each other. The two images are recorded by a high-sensitivity video camera, and polarization of fluorescence at any point is calculated from the relative intensity of both images at this point. From the value of polarization, the orientation of the absorption dipole of the dye, and thus orientation of F-actin, can be calculated. To illustrate the utility of the method, we measured orientation of actin cores in microvilli of chicken intestinal epithelial cells. F-actin in microvillar cores was labeled with rhodamine-phalloidin; measurements showed that the orientation was the same when microvillus formed a part of a brush border and when it was separated from it suggesting that "shaving" of brush borders did not distort microvillar structure. In the absence of nucleotide, polarization of fluorescence of actin cores in isolated microvilli was best fitted by assuming that a majority of fluorophores were arranged with a perfect helical symmetry along the axis of microvillus and that the absorption dipoles of fluorophores were inclined at 52 degrees with respect to the axis. When ATP was added, the shape of isolated microvilli did not change but polarization of fluorescence decreased, indicating statistically significant increase in disorder and a change of average angle to 54 degrees. We argue that these changes were due to mechanochemical interactions between actin and myosin-I.  相似文献   

20.
Flow linear dichroism (LD) of different benzo[a]pyrene diol epoxide (BPDE) isomers covalently bound to calf thymus DNA or poly(dG-dC) provides information about binding geometry and DNA perturbation. With anti-BPDE the apparent angle between the long axis (z) of the pyrene chromophore and the DNA helix axis is approximately 30 degrees as evidenced from the LD of z-polarized absorption bands in the pyrenyl chromophore at 252 and 346 nm. The corresponding angle for the in-plane short axis (y) is determined to be approximately 70 degrees from a y-polarized band at 275 nm. The binding of (+)-anti-BPDE to DNA is found to cause a considerable reduction of the DNA orientation. This is ascribed to a decreased persistence length of DNA, owing either to increased flexibility ("flexible joints") or to permanent kinks at the points of binding. The reduced linear dichroism (LDr), i.e., the ratio between LD and isotropic absorbance, of the long-wavelength absorption band system of BPDE bound to DNA exhibits a wavelength dependence that indicates a relatively wide orientational distribution of the z axis of pyrene. Fluorescence data support the conclusion of a heterogeneous distribution, and a very low polarization anisotropy indicates a mobility between the different orientational states, which is rapid compared to the fluorescence lifetime (nanosecond time scale). Attempts are made to simulate the observed LDr features of the (+)-anti-BPDE-poly(dG-dC) complex using different distribution models on the assumption that the angular dependence of the spectral perturbation is due to dispersive interactions with DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号