首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Transforming chromosomal DNA, irradiated with long-wave UV light in the presence of 4,5,8-trimethylpsoralen (TMP) binds to competent B. subtilis cells as effectively as non-treated DNA, but its transforming activity is strongly reduced.Uptake studies show that the entry of transforming DNA, after some stimulation by short periods of irradiation in the presence of TMP, decreases proportionally with the dose of irradiation. Crosslinking was quantitated by electron microscopy. Since the number of crosslinks increases proportionally with the dose of irradiation, it is suggested that entry of donor DNA is prevented by crosslinks. The inhibition of entry of DNA is paralleled both by decreased breakdown of crosslinked DNA interacting with competent cells, and decreased breakdown by nuclease activity liberated during protoplasting of competent cultures. These data support the model of Lacks et al. (1976) which postulates that a membrane-bound deoxyribonuclease is engaged in the entry of donor DNA into the competent cell.The transforming activity of the chloramphenicol-resistance carrying plasmid pC194, originally obtained from Staphylococcus aureus, is also destroyed by TMP crosslinks. Contrary to chromosomal DNA, its association with the cells is stimulated by longwave UV irradiation in the presence of TMP, but experiments are presented suggesting that the DNA is still vulnerable to the action of exogenous pancreatic deoxyribonuclease.Transfecting SPP1 DNA is also inactivated by TMP crosslinks. Marker rescue of transfecting DNA containing crosslinks occurs; the extent of rescue of one marker is considerably in excess of that of linked markers.  相似文献   

2.
Following uptake by competent Bacillus subtilis, transforming DNA is converted to two distinct slowly sedimenting molecular forms which possess little transforming activity (eclipse). A few minutes after uptake is initiated, a physical complex of donor and recipient DNA begins to form. The recovery of donor transforming activity following eclipse, and the appearance of recombinant activity, previously reported by Venema, Pritchard &; Venema-Schröder (1965), is shown to be due to changes occurring in the donor—recipient complex. This complex exists transiently in a form with low recombinant-type transforming activity. This transient form may be one in which the donor and recipient components are joined non-covalently. The donor-recipient complex is shown to be a heteroduplex structure in which the donor moiety has an approximate molecular weight of 750,000.  相似文献   

3.
The extent of association between donor transforming deoxyribonucleic acid (DNA) and recipient DNA in Haemophilus influenzae as a function of ultraviolet (UV) dose to the transforming DNA has been measured by isopycnic analysis of lysates of (3)H-labeled recipient cells exposed to DNA labeled with (32)P and heavy isotopes. Except for doses above 15,000 ergs/mm(2), the results of these measurements are in good agreement with previous estimates made by another technique. Experiments with a mutant temperature sensitive for DNA synthesis and another mutant defective in excision of pyrimidine dimers suggest that the discrepancy between the methods of high doses results from DNA synthesis, in which portions of the associated donor DNA containing pyrimidine dimers are excised and broken down, and the components are reutilized for synthesis.Repair of UV-irradiated, transforming DNA during incubation of recipient cells is observed as an increase in transforming ability when fractions from CsCl gradients of cell lysates are assayed on excision-deficient cells. When transforming DNA containing markers of different UV sensitivities is used, repair of the UV-resistant nov marker by excision proficient cells takes place exclusively in the donor DNA that is associated with recipient DNA, and this repair is observed even in the absence of DNA synthesis. However, no repair is observed in the case of the more UV-sensitive str marker, possibly because excision events may remove a large fraction of the integrated str markers in addition to repairing a small fraction of the integrated DNA containing this marker.  相似文献   

4.
DNA endonuclease activities from the chromatin of normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells were examined on DNA treated with 8-methoxypsoralen (8-MOP) or 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light, which produce monoadducts and DNA interstrand cross-links, and angelicin plus UVA light, which produces mainly monoadducts. 9 chromatin-associated DNA endonuclease activities were isolated from normal and XPA cells and assayed for activity on PM2 bacteriophage DNA that had been treated with 8-MOP or TMP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given. Cross-linking of DNA molecules was confirmed by alkaline gel electrophoresis. In both normal and XPA cells, two DNA endonuclease activities were found which were active on 8-MOP and TMP plus UVA light treated DNA. One of these endonuclease activities, pI 4.6, is also active on intercalated DNA and a second one, pI 7.6, is also active on UVC (254 nm) light irradiated DNA. The major activity against angelicin plus UVA light treated DNA in both normal and XPA cells was found in the fraction, pI 7.6. The levels of activity of both of these fractions on all 3 psoralen-damaged DNAs were similar between normal and XPA cells. These results indicate that in both normal and XPA cells there are at least two different DNA endonucleases which act on both 8-MOP and TMP plus UVA light treated DNA.  相似文献   

5.
Summary Previously it was demonstrated that, in contrast to the homologous donor-recipient complex, the unstable heterologous donor-recipient complex remains bound to the cellular membrane. To examine whether proteins known to be involved in the processing of transforming DNA in Bacillus subtilis are associated with membrane fragments which carry chromosomal DNA, a crude membrane-DNA complex was subjected to electrophoresis through a sucrose gradient. This resulted in the separation of membrane fragments associated with DNA and free membrane fragments. By means of two-dimensional gel electrophoresis several proteins, either uniquely present or considerably enriched in the purified membrane-DNA complex, were detected. Among these proteins we identified the 45 kD recE gene product, required for recombination, the 18 kD binding protein involved in the binding of transforming DNA and a 17 kD nuclease involved in the entry of transforming DNA.These results suggest that the membrane sites at which donor DNA integrates into the recipient chromosome are in the vicinity of the sites of entry of donor DNA through the membrane.Abbreviations DNAase I deoxyribonuclease I - DRC donor-recipient DNA complex - PEG polyethyleneglycol - PMSF phenylmethylsulphonylfluoride - SSC standard saline citrate - TCA trichloroacetic acid  相似文献   

6.
Summary Lysates obtained shortly after entry of transforming DNA to Bacillus subtilis contain donor-recipient DNA complexes, in which the donor moiety is associated with the recipient DNA in an unstable way. The complexes could be artificially stabilized by crosslinking with 4,5,8-trimethylpsoralen. The unstable complexes dissociated upon helix-destabilizing treatments, such as heating at 70°C, and CsCl gradient centrifugation at pH 11.2, but remained stable during CsCl gradient centrifugation at pH 10. Donor-recipient DNA complexes were not formed after entry of heterologous pUB110 DNA. These observations suggest that base-pairing is involved in the unstable association. The donor moiety of the unstable complexes was completely, or almost completely, digestible by nuclease S1, indicating that the donor and recipient base-sequences are only paired over very short distances.The unstable donor-recipient DNA complexes are true recombination intermediates because (i) strain 7G224 (recE4) was impaired in the formation of the unstable complexes, and (ii) the unstable complexes were rapidly converted to stable complexes in recombination proficient strains, whereas their conversion was delayed in the recombination deficient strain 7G84.Unstable complexes were also formed with Escherichia coli donor DNA, but to a lesser extent. Apparently a limited degree of base-sequence homology is sufficient to initiate recombination.  相似文献   

7.
Bacteroides fragilis TMP10, which is clindamycin-erythromycin resistant (Clnr) and tetracycline resistant (Tetr), contains several plasmids and is capable of transferring drug resistance markers to suitable recipients. We were able to separate a 14.6-kilobase self-transmissible Clnr plasmid, pBFTM10, from the other plasmids of TMP10 in a tetracycline-sensitive recipient strain, B. fragilis TM4000. All Clnr transconjugants acquired an unaltered pBFTM10 and became plasmid donor strains. Transfer is proposed to occur by conjugation since it required to cell-to-cell contact of filter matings and was insensitive to DNase, but sensitive to chloroform treatment of donor cells. The efficiency of transfer of pBFTM10 in a Tets background (TM4003) was not affected by pretreatment of donor cells with clindamycin. A spontaneously occurring Clns derivative, pBFTM10 delta 1, suffered a deletion of DNA, which included a 4.4-kilobase EcoRI fragment. A complex interaction between the autonomous plasmid pBFTM10 and a tetracycline transfer element also present in strain TMP10 was observed since pretreatment of this donor with tetracycline or clindamycin resulted in a marked increase in transfer of both tetracycline and clindamycin resistance.  相似文献   

8.
The fate of transforming deoxyribonucleic acid (DNA) in Bacillus subtilis was studied by isolating the DNA-membrane complex on Renografin gradients. Soon after uptake, transforming DNA binds to the cell membrane and displays a greater resistance to shear than the recipient genome-membrane complex. Ten minutes after uptake, a portion of the donor DNA is released from the membrane. Most of the released donor radioactivity represents unintegrated, biologically inactive DNA. Recombinant or integrated DNA is enriched 1.5- to 1.7-fold in the membrane. This enrichment last at least 30 min after termination of DNA uptake, and probably much longer. The data suggest that transforming DNA may be integrated into the recipient genome on, or close to, the cell membrane.  相似文献   

9.
Summary In re-extracted DNA obtained shortly after uptake of transforming DNA by Bacillus subtilis, increased amounts of donor DNA radioactivity banding at the position of donor-recipient DNA complex (DRC) are observed in CsCl gradients, if the cells are irradiated with high doses of UV prior to reextraction of the DNA. Qualitatively, the same phenomenon is observed if lysates of transforming cells are irradiated. UV-irradiation of lysates of competent cells to which single-stranded DNA is added after lysis, does not result in linkage of this DNA to the chromosomal DNA. Two observations argue in favour of the formation of a specific labile complex between donor and resident DNA during transformation. Firstly, heterologous donor DNA from Escherichia coli, although being processed to single-stranded DNA in competent B. subtilis, does not seem to be linked to the recipient chromosome upon UV-irradiation, and secondly, the labile complex of donor and recipient DNA can be stabilized by means of treatment of the lysates of transforming cells with 4, 51, 8-trimethylpsoralen in conjuction with long-wave ultra violet light irradiation. This indicates that base-pairing is involved in the formation of the complex. On the basis of these results we assume that the unstable complex of donor and recipient DNA is an early intermediate in genetic recombination during transformation.  相似文献   

10.
A T Yeung  B K Jones  M Capraro    T Chu 《Nucleic acids research》1987,15(12):4957-4971
We have examined the interactions of UvrABC endonuclease with DNA containing the monoadducts of 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (TMP). The UvrA and UvrB proteins were found to form a stable complex on DNA that contains the psoralen monoadducts. Subsequent binding of UvrC protein to this complex activates the UvrABC endonuclease activity. As in the case of incision at pyrimidine dimers, a stable protein-DNA complex was observed after the incision events. For both 8-MOP and TMP, the UvrABC endonuclease incised the monoadduct-containing strand of DNA on the two sides of the monoadduct with 12 bases included between the two cuts. One incision was at the 8th phosphodiester bond on the 5' side of the modified base. The other incision was at the 5th phosphodiester bond 3' to the modified base. The UvrABC endonuclease incision data revealed that the reactivity of psoralens is 5'TpA greater than 5'ApT greater than 5'TpG.  相似文献   

11.
DNA interstrand cross-links are formed by chemotherapy drugs as well as by products of normal oxidative metabolism. Despite their importance, the pathways of cross-link metabolism are poorly understood. Laser confocal microscopy has become a powerful tool for studying the repair of DNA lesions that can be detected by immunofluorescent reagents. In order to apply this approach to cross-link repair, we have synthesized conjugates of 4,5',8-trimethylpsoralen (TMP) and easily detected compounds such as Lissamine rhodamine B sulfonyl chloride (LRB-SC), biotin, and digoxigenin. These conjugates are activated by UVA, and we have analyzed the intracellular localization of DNA damage and DNA reactivity by confocal and immunofluorescence microscopy. The LRB-SC-TMP conjugate 2 appeared mainly in the mitochondria, while the biotin-TMP conjugate 4 preferentially localized in the cytoplasm. Adducts formed by UVA and digoxigenin conjugates of TMP 7a and 4,5'-dimethylangelicin (DMA) 7b, which forms only monoadducts, were largely localized to the nucleus. Exposure of cells incubated with 7a and 7b to a 364 nm UV laser directed toward defined nuclear regions of interest resulted in localized adduct formation which could be visualized by immunofluorescence. Repair-proficient cells were able to remove the photoadducts, while repair-deficient cells were unable to repair the damage. The results indicated that the digoxigenin-TMP conjugate 7a and digoxigenin-DMA conjugate 7b can be used for studying the repair of laser localized DNA monoadducts and cross-links.  相似文献   

12.
Competent Bacillus subtilis cells were exposed to radioactive and density labeled donor DNA extracted from B. pumilus and B. licheniformis. The DNA from these strains hybridized with B. subtilis DNA in vitro at a rate of 24% and 11%, respectively. After entry the vast majority of heterologous DNA was found at the single-strand DNA position in CsCl gradients, and was gradually degraded during incubation. Much less donor DNA than expected from the hybridization values participated in the formation of the donorrecipient complex (DRC). By subjecting the heterologous DRC to sonication and alkaline CsCl gradient centrifugation, it was established that the DRC consisted of three components: (1) recipient DNA in which breakdown products of donor DNA were incorporated through DNA synthesis, (2) recipient DNA in which donor DNA was covalently integrated and (3) recipient DNA in which the donor moiety was not covalently integrated.  相似文献   

13.
Heterospecific transformation between Haemophilus influenzae and H. parainfluenzae was investigated by isopycnic analysis of deoxyribonucleic acid (DNA) extracts of (3)H-labeled transforming cells that had been exposed to (32)P-labeled, heavy transforming DNA. The density distribution of genetic markers from the resident DNA and from the donor DNA was determined by transformation assay of fractions from CsCl gradients, both species being used as recipients. About 50% of the (32)P atoms in H. parainfluenzae donor DNA taken up by H. influenzae cells were transferred to resident DNA, and only a small amount of the label was lost under conditions of little cell growth. There was less transfer in the reciprocal cross, and almost half of the donor label was lost. In both crosses, the transferred donor material transformed for the donor marker considerably more efficiently when assayed on the donor species than on the recipient species, indicating that at least some of the associated (32)P atoms are contained in relatively long stretches of donor DNA. When the transformed cultures were incubated under growth conditions, the donor marker associated with recipient DNA transformed the donor species with progressively decreasing efficiency. The data indicate that the low heterospecific transformation between H. influenzae and H. parainfluenzae may be due partly to events occurring before association of donor and resident DNA but results mostly from events that occur after the association of the two DNA preparations.  相似文献   

14.
Lysates containing folded chromosomes of competent Bacillus subtilis were prepared. The chromosomes were supercoiled, as indicated by the biphasic response of their sedimentation rates to increasing concentrations of ethidium bromide. Limited incubation of the lysates with increasing concentrations of ribonucleases resulted in a gradual decrease in the sedimentation velocity of the deoxyribonucleic acid (DNA) until finally a constant S value was reached. Incubation with sonicated, 4,5',8-trimethylpsoralen-monoadducted, denatured, homologous donor DNA molecules at 37 degrees C and concomitant irradiation with long-wave ultraviolet light of the nucleoid-containing lysates resulted in the formation of complexes of the donor DNA molecules and the recipient chromosomes. This complex formation was stimulated when nucleoids were previously (i) unfolded by ribonuclease incubation, (ii) (partially) relaxed by X irradiation, or (iii) subjected to both treatments. Monoadducts were not essential. On the other hand, the complex-forming capacity of recipient chromosomes previously cross-linked by 4,5',8-trimethylpsoralen diadducts was greatly reduced, suggesting that strand separation of the recipient molecule was involved in the formation of the complex. None of these effects has been observed when heterologous (Escherichia coli) donor DNA has been used. When the same kind of experiments were carried out at 70 degrees C, donor-recipient DNA complexes were also formed and required strand separation and homology similar to donor-recipient complex formation at 37 degrees C. However, in contrast to what was found at 37 degrees C, unfolding plus relaxation of the nucleoids, as well as the absence of monoadducts in the donor DNA fragments, resulted in a decrease in complex formation. On the basis of these results, we assume that superhelicity can promote the in vitro assimilation of single-stranded donor DNA fragments by nucleoids of competents B. subtilis cells at 70 degrees C, but that at 37 degrees C a different mechanism is involved.  相似文献   

15.
Summary Although heterospecific transformation is extremely inefficient and very little heterologous donor DNA integrates into the recipient chromosome in a stable way, we have previously shown that B. pumilus DNA entering competent B. subtilis efficiently associates with the recipient chromosome in an unstable way. This association can be stabilized by photocrosslinking in the presence of 4,5,8-trimethylpsoralen; it depends on the recombination proficiency of the recipient strain and on strand-separation of the recipient chromosome (te Riele and Venema 1982b). The present study provides further evidence that the heterologous donor DNA and the recipient DNA are associated by regions of base-pairing. Based on the high sensitivity of the donor moiety in the complex to nuclease S1 (90%) and the high sensitivity of the complex to moderate denaturing conditions (Tm=48°C), we presume that donor and recipient DNA are associated either by several short sequences of 15–25 fairly well matched base pairs or by a region of base-pairing of about 200 bases, which contains 25% of mismatches. During incubation, the unstable complex disappears, probably due to nucleolytic degradation.The unstable heterologous donor-recipient complex (DRC) was found to be membrane-bound. However, in contrast to homologous DRC, the unstable heterologous DRC remains membrane bound during incubation. Apparently, the predominantly single-stranded character of the heterologous DRC prevents release of the complex from the membrane.Abbreviations DRC donor-recipient complex - TMP 4,5,8-trimethyl-psoralen - DNAase I deoxyribonuclease 1 - TCA trichloroacetic acid  相似文献   

16.
We have designed an in vitro system using mammalian nuclear extracts, or fractions derived from them, that can restore the sequences missing at double-strand breaks (gaps) or in deletions. The recombination substrates consist of (i) recipient DNA, pSV2neo with gaps or deletions ranging from 70 to 390 bp in the neo sequence, and (ii) donor DNAs with either complete homology to the recipient (pSV2neo) or plasmids whose homology with pSV2neo is limited to a 1.0- to 1.3-kbp neo segment spanning the gaps or deletions. Incubation of these substrates with various enzyme fractions results in repair of the recipient DNA's disrupted neo gene. The recombinational repair was monitored by transforming recA Escherichia coli to kanamycin resistance and by a new assay which measures the extent of DNA strand transfer from the donor substrate to the recipient DNA. Thus, either streptavidin- or antidigoxigenin-tagged beads are used to separate the biotinylated or digoxigeninylated recipient DNA, respectively, after incubation with the isotopically labeled donor DNA. In contrast to the transfection assay, the DNA strand transfer measurements are direct, quantitative, rapid, and easy, and they provide starting material for the characterization of the recombination products and intermediates. Accordingly, DNA bound to beads serves as a suitable template for the polymerase chain reaction. With appropriate pairs of oligonucleotide primers, we have confirmed that both gaps and deletions are fully repaired, that deletions can be transferred from the recipient DNA to the donor's intact neo sequence, and that cointegrant molecules containing donor and recipient DNA sequences are formed.  相似文献   

17.
Ultraviolet-sensitive and wild-type Haemophilus influenzae cells were exposed to irradiated and unirradiated transforming deoxyribonucleic acid (DNA) containing a marker which can be linked to another marker in the cells. Lysates were made after various times of incubation and assayed for transforming activity on an excisionless recipient. Repair can be noted as an increase in activity from the irradiated donor DNA after its linkage to the recipient DNA. No repair can be observed in a mutant which is unable to integrate transforming DNA. There is a little repair in another mutant which is unable to excise pyrimidine dimers. H. influenzae cells also repair nondimer damage, as judged by the increase in activity observed in lysates made with irradiated and maximally photoreactivated DNA.  相似文献   

18.
Repair of ultraviolet-irradiated transforming deoxyriboinucleic acid (DNA) in several strains of Bacillus subtilis was studied in order to determine the effects of excision repair and postreplication repair on transformation. Two mutations that cause a Uvr- and phenotype (uvr-1 and uvr-42) were shown to have strikingly different effects on repair of ultraviolet-irradiated transforming DNA. Genetic and kinetic evidence is presented to show that integrated DNA was apparently repaired by both excision and postreplication repair in wild-type and in uvr-1 recipients, although the latter excise pyrimidine dimers very slowly. In uvr-42 mutants, which are defective in incision at pyrimidine dimers, dimer-containing DNA was integrated. Postreplication repair apparently saved uvr-42 recipient cells from the lethal effects of integrated dimers, but the recombination events accompanying postreplication repair greatly reduced the linkage between closely linked genetic markers in the donor DNA. Repair of transforming DNA in a recG recipient, which does excision repair but not postreplication repair, was nearly as efficient as in wild-type cells. However, in this recipient linkage was altered only slightly, if at all, compared with wild-type cells. The apparent reduction in size of integrated regions of ultraviolet-irradiation transforming DNA probably results mainly from postreplication repair of larger integrated regions.  相似文献   

19.
A mutation in Bacillus subtilis call recC4 which results in an impairment of genetic transformation was transferred to a new strain using the closely linked marker mit-2 (mitomycin C-resistance) for selection. This derived strain was in turn impaired in transformation but showed normal levels of sensitivity to ultraviolet irradiation and methyl methane sulfonate. The genetic and molecular fate of transforming DNA in the recC4 strain was studied. Normal amounts of DNA were taken up by the cells and this DNA or parts of it became associated with recipient DNA. Linkage between genes on donor and recipient molecules was, however, not established and transformants were not generated. The recC4 mutation therefore affects a step in the recombination pathway during transformation. Either the association between donor and recipient DNA molecules is abnormal or the cells are deficient in the further processing of the associated complex.  相似文献   

20.
Use of nonselective medium for plating cells following mating has revealed that Rec recipient strains of E. coli may be killed as a result of conjugation. Sensitivity of RecA-, RecB-, and RecC- recipients increases with ratio of donor: recipient cells in mating mixtures and with time of mating. A Rec+ recipient shows no lethal zygosis in these experiments performed without aeration. Cell contact does not seem to be responsible for the sensitivity of Rec- strains, since lethality is prevented when cell contact is permitted but DNA transfer is not. Thus, an event(s) occuring subsequent to entry of donor DNA appears to cause lethality in Rec- recipients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号