首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saplings of an ozone sensitive clone of birch (Betula pendulaRoth,KL-5-M) were well-watered or exposed to mild drought-stresscombined with ambient or elevated (1.5xthe ambient) ozone for11 weeks in open-field conditions in central Finland. Stomatalresponse, visible injury, chlorophyll and nutrient content,and changes in cellular anatomy and plant growth were studied.Drought stress alone, in ambient ozone, reduced stomatal densityand stomatal conductance. Drought stress and ozone effects wereadditive, reducing total leaf number, foliage area and starchformation in mesophyll cells. Drought stress and ozone effectswere additive, increasing the N concentration in the leaves,the thickness of the upper epidermal cell wall, the number ofpectinaceous projections of mesophyll cell walls, and the vacuolartannin-like depositions and phenolic droplets, regarded as signsof activated stress defence mechanisms. The increase in specificfoliage mass, cytoplasmic lipids (younger leaves), and a condensedappearance of the upper epidermal mucilaginous layer were causedby both drought and ozone, but were not additive. The resultsshow that combined drought stress contributed to birch responsesto 1.5xcurrent ambient ozone concentrations, corresponding tocritical-level ozone exposure. The only beneficial effect ofdrought stress was the slight reduction of visible leaf symptomsinduced by ozone in autumnal leaves.Copyright 1998 Annals ofBotany Company Birch,Betula pendula, sensitive clone, ozone, drought, microscopy.  相似文献   

2.
BLUM  A.; SULLIVAN  C. Y. 《Annals of botany》1986,57(6):835-846
It may be that land-races of sorghum (Sorghum sp.) and millet[Pennisetum americanum (L.) Leeke] which evolved along geographicalgradients of rainfall in Africa and India, differ in their droughtresistance. Any physiological attributes found to be correlatedwith low rainfall might be important and effective characteristicsfor crop production in dry regions. Twenty land-races were chosen which evolved along geographicalgradients of rainfall, seven millets from India, six sorghumsfrom Mali, and seven sorghums from the Sudan. Races were evaluatedfor their growth potential and plant water relations under hydroponicsconditions in a growth chamber. A water stress treatment wasimposed by adding polyethylene glycol-8000 to the nutrient solution,giving a solute water potential of -0.5 MPa, compared with acontrol solution at 003 MPa. Drought resistance, in terms of relatively less growth inhibitionunder stress, was higher in races from dry regions than in racesfrom humid regions. Of all the physiological variables measured[carbon exchange rate, (CER), transpiration, transpiration ratio(CER/transpiration), leaf diffusive resistance, leaf water potentialand osmotic adjustment], only osmotic adjustment under stresswas generally correlated with average rainfall at each race'sorigin, indicating greater osmotic adjustment in land-racesfrom drier regions. Races with a greater capacity for osmoticadjustment were characterized by smaller plants with high ratesof transpiration and low rates of leaf senescence under stress. The carbon exchange rate per unit leaf area increased as liveleaf area decreased under stress due to leaf senescence. Thus,drought resistant races under stress tended to have lower CERper unit live leaf area (but not per plant) than susceptibleraces. Transpiration ratios under stress were lower in resistantthan in susceptible races, mainly because resistant races hadhigher transpiration. The results for the measured variables showed a general trendfor greater drought resistance in sorghum than in millet, indicatingthat the commonly observed adapation of the millets to dry environmentsmay be due to other factors, such as drought escape or heattolerance. Sorghum sp. Pennisetum americanum L. (Leeke), water stress, osmotic adjustment, photosynthesis, transpiration, evolution, drought resistance  相似文献   

3.
Soil salinity and drought compromise water uptake and lead toosmotic adjustment in xero-halophyte plant species. These importantenvironmental constraints may also have specific effects onplant physiology. Stress-induced accumulation of osmocompatiblesolutes was analysed in two Tunisian populations of the Mediteraneanshrub Atriplex halimus L.—plants originating from a salt-affectedcoastal site (Monastir) or from a non-saline semi-arid area(Sbikha)—were exposed to nutrient solution containingeither low (40 mM) or high (160 mM) doses of NaCl or 15% polyethyleneglycol. The low NaCl dose stimulated plant growth in both populations.Plants from Monastir were more resistant to high salinity andexhibited a greater ability to produce glycinebetaine in responseto salt stress. Conversely, plants from Sbikha were more resistantto water stress and displayed a higher rate of proline accumulation.Proline accumulated as early as 24 h after stress impositionand such accumulation was reversible. By contrast, glycinebetaineconcentration culminated after 10 d of stress and did not decreaseafter the stress relief. The highest salt resistance of Monastirplants was not due to a lower rate of Na+ absorption; plantsfrom this population exhibited a higher stomatal conductanceand a prodigal water-use strategy leading to lower water-useefficiency than plants from Sbikha. Exogenous application ofproline (1 mM) improved the level of drought resistance in Monastirplants through a decrease in oxidative stress quantified bythe malondialdehyde concentration, while the exogenous applicationof glycinebetaine improved the salinity resistance of Sbikhaplants through a positive effect on photosystem II efficiency. Key words: Atriplex halimus, glycinebetaine, halophyte, NaCl, osmotic adjustment, proline, salinity, water stress  相似文献   

4.
This study examines the effects of water supply and nutritionon the water status, gas exchange and growth of mature plantsand resprouts of Arbutus unedo, a Mediterranean evergreen shrubadapted to drought and poor nutrition. Mature plants of A. unedorespond to irrigation with increased leaf water potential duringsummer drought, but they show a very conservative use of waterand they do not increase leaf conductance. There is also a verysmall increase in net photosynthesis and growth, which doesnot significantly increase productivity. Resprouts of A. unedo increase water potential, leaf conductance,transpiration rate, net photosynthesis and growth rate in responseto watering, showing a less conservative use of water than matureplants. Increased growth rates, both in mature plants and resprouts,are likely to be due to the higher cell turgor caused by improvedleaf water potential, rather than to increased photosynthesis. The only effect of nutrient addition on mature plants is anincrease in leaf nutrient content, and other aspects of thephysiology and growth of resprouts were unaffected. We thereforeconclude that water is a more limiting factor than nutrientsfor mature plants and resprouts of A. unedo growing in the studyarea. These results support previous data which indicate thathigher growth rates in resprouts than in mature plants of A.unedo are mainly the result of a higher water availability.Copyright1994, 1999 Academic Press Arbutus unedo L., strawberry tree, resprouts, water stress, nutrient availability, water relations, gas exchange, growth rate, regeneration  相似文献   

5.
Mechanically-induced stress (MIS) applied by brushing the shootsof lettuce and cauliflower seedings with paper for 90 s eachday retarded the growth of water deficient and nutrient deficientseedlings as effectively as it did the growth of those wateredregularly or fed regularly with nutrient. The results are discussedboth in relation to how MIS might effect plant growth in thefield and to the possible use of stress treatments applied duringthe raising of transplants. Lactuca sativa L., lettuce, Brassica oleracea var, botrytis DC, cauliflower, mechanically-induced stress (MIS), water deficiency, nutrient deficiency, water potential  相似文献   

6.
Erickson and Michelini (1957) derived the plastochron index(PI) and a term sometimes referred to as the plastochron ratio(PR), as quantitative expressions of the vegetative developmentof plants. With the stable plant growth in environmental chambersand glasshouses, the assumptions used to derive these termshave been validated. However, more recently these expressionsare being used to characterize growth under the unstable conditionsresulting from the imposition of stress. This study examinesthe validity of the assumptions used to derive PI and PR forfield-grown soya beans [Glycine max (L.) Merrill] subjectedto drought stress. Under stress conditions, the assumptionswere not satisfied. In fact, observing change in PR appearedto be a good method for detecting drought stress in these plants.An alternate method for calculating PI based on a single, youngleaf was developed. This alternate method appeared to be a moresensitive indicator of changes in leaf emergence rate underunstable conditions. Plastochron index, plastochron ratio, Glycine max (L.), soya bean, drought, leaf growth  相似文献   

7.
A field experiment was conducted with a water-stressed treatmentand well-watered control using eight maize (Zea mays L.) cultivars.Effects of water deficits on cell membrane stability (CMS) measuredby the polyethylene glycol (PEG) test, leaf surface wax content,and relative growth rate were investigated. Cytoplasmic lipidcontent was also analysed. Cell membrane stability and leaf surface wax content increasedwith the degrees of stress. Tolerance to drought evaluated asincrease in CMS under water deficit conditions was well differentiatedbetween cultivars and was well correlated with a reduction inrelative growth rate under stress. A negative correlation wasfound between percentage injury in the PEG test and leaf surfacewax content. High phospholipid contents were observed in tissuesof drought tolerant cultivars under water deficit conditions. Key words: Cell membrane stability, cytoplasmic lipid, drought tolerance, leaf surface wax, relative growth rate  相似文献   

8.
9.
Maize (Zea mays L.) productivity under drought stress dependsto some extent upon a hybrid's capacity to produce and translocateassimilate to its developing kernels during the stress periodand/or after the stress is relieved. The objective of this studywas to evaluate differences in carbon and nitrogen accumulationand partitioning under drought stress among maize hybrids thatdiffer in yield potential and/or physiological metabolism duringreproductive development. The hybrids B73 x LH38, FS854, B73xMol7and US13 were subjected to drought stress from the 7th leafstage until pollination was completed, at which time the soilof the stressed plots was replenished with water. For d. wtand chemical constituent determinations, plants of each hybridwere harvested from the irrigated and drought stressed plotsat silking, mid-grain fill, and physiological maturity. Averagedover hybrids, vegetative biomass at silking was reduced 25%as a result of the drought stress treatment, with B73 x LH38and FS854 accumulating more total biomass during the later portionof grain fill than the other two hybrids under both soil moisturetreatments. At silking, the total non-structural carbohydratecontent of the hybrids' vegetative tissue was not changed asa result of drought stress, whereas their reduced nitrogen (N)contents were decreased by an average of 33%. B73 x LH38 andFS854 had greater grain carbohydrate and reduced N contentsunder irrigation and smaller decreases in those variables asa result of soil moisture deficit than did the other two hybrids.These results indicate that the greater drought tolerance ofB73 x LH38 and FS854 to stress imposed during vegetative andearly reproductive development resulted from their more activeN uptake and assimilation and sugar production during the laterportion of grain fill and from their more efficient partitioningof assimilate to the developing kernels. Zea mays L., maize, drought stress, nitrogen, carbohydrates, hybrids, partitioning  相似文献   

10.
11.
Young sunflower plants (Helianthus annuus L.) under stress oflow nitrate or phosphate availability exhibited increases inroot: shoot ratio and in kinetic parameters for uptake. Theyshowed no significant changes in photosynthetic utilizationof either nutrient. Increases in root: shoot ratio were achievedby early and persistent suppression of shoot growth, but notroot growth. Affinity for phosphate uptake, 1/Km(P), increasedwith phosphate stress, as did affinity for nitrate uptake, 1/Km(N),with nitrate stress. Maximal uptake rate, Vmax, for phosphateuptake increased with phosphorus stress; Vmax for nitrate didnot increase with nitrogen stress. Phosphate Vmax was relatedstrongly to root nutrient status. Decreases in Vmax with plantage were not well explained by changes in age structure of roots.Estimated benefits of acclimatory changes in root: shoot ratioand uptake kinetics ranged up to 2-fold increases in relativegrowth rate, RGR. The relation of RGR to uptake physiology followedpredictions of functional balance moderately well, with somesystematic deviations. Analyses of RGR using growth models implyno significant growth benefit from regulating Vmax, specifically,not from down-regulating it at high nutrient availability. Quantitativebenefits of increases in root: shoot ratio and uptake parametersare predicted to be quite small under common conditions whereinnutrient concentrations are significantly depleted by uptake.The root: shoot response is estimated to confer the smallestbenefit under non-depleting conditions and the largest benefitunder depleting conditions. Even then, the absolute benefitis predicted to be small, possibly excepting the case of heterogeneoussoils. Depleting and non-depleting conditions are addressedwith very different experimental techniques. We note that atheoretical framework is lacking that spans both these cases,other than purely numerical formulations that are not readilyinterpreted. Key words: Nutrient stress, nutrient uptake, nutrient use efficiency, relative growth rate, Helianthus annuus  相似文献   

12.
The aim of this study is to evaluate the contribution of bacteroidproline catabolism as an adaptation to drought stress in soybeanplants. To accomplish this, soybeans (Glycine max L. Merr.)were inoculated with either a parental strain of Bradyrhizobiumjaponicum which was able to catabolize proline, or a mutantstrain unable to catabolize proline. A large strain-dependentdifference in nodule number and size was observed. In orderto separate inoculant-dependent effects on nodulation from effectson bacteroid proline catabolism, plants inoculated with eachstrain were only compared to other plants inoculated with thesame strain, thus removing the observed inoculant-dependentdifferences in nodulation as a bar to interpretation of theresults. This experimental design allowed a comparison of thedrought penalty on yield for plants with parental bacteroidsand for plants with mutant bacteroids. The two results werethen compared to each other in order to evaluate the impactof the ability of bacteroids to catabolize proline on the responseto drought stress. When water stress was mild, soybean plants inoculated with bacteriaunable to catabolize proline suffered twice the percentage decreasein seed yield as did plants inoculated with bacteria able tocatabolize proline. However, when stress was severe there wasno significant effect of the ability of bacteroids to catabolizeproline on drought imposed decrease in seed yield. These resultssuggest that increasing the oxidative flux of proline in bacteroidsmight provide an agronomically significant yield advantage whenstress is modest, but that severe drought stress would probablyoverwhelm this yield benefit. Key words: N2-fixation, proline dehydrogenase, drought stress  相似文献   

13.
Pigeonpea is a tropical grain-legume, which is highly dehydrationtolerant. The effect of drought stress on the carbohydrate metabolismin mature pigeonpea leaves was investigated by withholding waterfrom plants grown in very large pots (50 kg of soil). The moststriking feature of drought-stressed plants was the pronouncedaccumulation of D-pinitol (1D-3-methyl-chiro-inositol), whichincreased from 14 to 85 mg g–1 dry weight during a 27d stress period. Concomitantly, the levels of starch, sucroseand the pinitol precursors myo-inositol and ononitol all decreasedrapidly to zero or near-zero in response to drought. The levelsof glucose and fructose increased moderately. Drought stressinduced a pronounced increase of the activities of enzymes hydrolysingsoluble starch (amylases) and sucrose (invertase and sucrosesynthase). The two anabolic enzymes sucrose phosphate synthase(sucrose synthetic pathway) and myo-inositol methyl transferase(pinitol synthetic pathway) also showed an increase of activityduring stress. These results indicate that pinitol accumulatedin pigeonpea leaves, because the carbon flux was diverted fromstarch and sucrose into polyols. Key words: Drought, polyols, pinitol, sucrose, starch, pigeonpea  相似文献   

14.
BOIS  J. F.; COUCHAT   《Annals of botany》1983,52(4):479-487
Neutron radiography was used to study root development in uplandrice (Oryza sativa L.) during and after a short period of drought.The limit of resolution (approx. 0.1 mm) of the method allowsfor the study of the adventitious root system in rice duringthe tillering stage. However the resolution is not sufficientto study development of the seminal system. Enlargement of neutronradiographs shows further details of primary root system. Thirty-six-day-old seedlings of two rice cultivars were subjectedto a 4-day water stress followed by rewatering. Neutron radiographyrevealed dehydration and inhibition of root growth during waterstress. During post-drought rewatering, the two cultivars behaveddifferently with regards to the secondary root growth recovery. Oryza sativa L, rice, water stress, neutron radiography, root growth, drought tolerance  相似文献   

15.
HENSON  I. E. 《Annals of botany》1983,52(2):247-255
The effects of a period of water stress (drought conditioning)on responses to a second (challenge) stress were examined inyoung vegetative rice (Oryza sativa L.) plants. Drought conditioningdid not affect the rate of subsequent stress development, nor,in a first experiment, did it influence relations between turgor(p) and total () leaf water potential. However, conditioningdid extend the range of p over which stomata remained open andsignificantly reduced the amount of ABA which accumulated inthe leaf at a given p. The change in stomatal behaviour (stomataladjustment) was quantitatively accounted for by the change inleaf ABA accumulation. The reduction in ABA accumulation due to conditioning did notinvolve a change in the potential capacity to produce ABA, asABA accumulation in partially dehydrated detached leaves wasnot reduced by conditioning. It is suggested that effects ofconditioning on leaf ABA content in the intact plant involvechanges in the rate of ABA export from the leaf. Oryza sativa L, rice, drought conditioning, stomata, water stress, abscisic acid  相似文献   

16.
A pressure-volume analysis of aubergine (Solanum melongena)leaves following water stress was undertaken to determine apossible role of changes in cellular water relations in influencingstomatal conductance responses to water stress. A comparisonof two methods of rehydrating the leaves was also undertaken.It was shown that the rehydration of excised leaves did notreveal osmoregulation, whilst rehydration of intact plants didreveal osmoregulation following water stress. An increase inthe bulk volumetric elastic modulus and the bound water fractionalso occurred in response to water stress. These results arediscussed in relation to pressure-volume technique and stomatalconductance responses to drought. Key words: P-V analysis, water stress, Solanum melongena  相似文献   

17.
A cDNA clone encoding a 64-amino acid type 3 metallothioneinprotein, designated GhMT3a, was isolated from cotton (Gossypiumhirsutum) by cDNA library screening. Northern blot analysisindicated that mRNA accumulation of GhMT3a was up-regulatednot only by high salinity, drought, and low temperature stresses,but also by heavy metal ions, abscisic acid (ABA), ethylene,and reactive oxygen species (ROS) in cotton seedlings. Transgenictobacco (Nicotiana tabacum) plants overexpressing GhMT3a showedincreased tolerance against abiotic stresses compared with wild-typeplants. Interestingly, the induced expression of GhMT3a by salt,drought, and low-temperature stresses could be inhibited inthe presence of antioxidants. H2O2 levels in transgenic tobaccoplants were only half of that in wild-type (WT) plants undersuch stress conditions. According to in vitro assay, recombinantGhMT3a protein showed an ability to bind metal ions and scavengeROS. Transgenic yeast overexpressing GhMT3a also showed highertolerance against ROS stresses. Taken together, these resultsindicated that GhMT3a could function as an effective ROS scavengerand its expression could be regulated by abiotic stresses throughROS signalling. Key words: Abiotic stress, antioxidant, GhMT3a, ROS, transgenic tobacco, yeast  相似文献   

18.
When stressed by low nutrient availability, young sunflowerplants (Helianthus annuus) showed responses seen in many otherspecies: increases in root uptake capacity (Vmax, l/Km), root:shoot ratio, and putative nutrient-use efficiency, nUE=l/(tissuenutrient content). A straightforward mechanistic model is derivedfor relative growth rate (RGR) in solution culture in termsof these factors. A linear regression based on the model indicatesa negative role for nUE, which violates a premise of the model.A revised model proposes that primary adaptations are only inuptake rate and growth or nutrient allocations, and these actthrough the photosynthetic utility of nutrient. The tissue nutrientcontent and associated nUE become dependent quantities. Thepredictions for RGR, as tested by linear regression, are improved.The model predicts that nUE can increase as external solutionconcentration decreases, but decreases with increased uptakeadaptations in one given environment. The decrease in nUE compromisespotential gains in RGR from uptake adaptations, and makes increasesin root: shoot ratio a nearly insignificant contributor to earlyRGR. The model and associated regression analyses are generalizedfor additional adaptations such as increased root fineness andfor different quantitative ways that a nutrient may limit photosynthesis.The model and analyses are also generalized to plant growthin soil and growth without functional balance between root andshoot. Key words: Relative growth rate, Helianthus annuus, nutrient stress, nutrient use efficiency, functional balance  相似文献   

19.
Physiological responses to water stress (drought) have beeninvestigated in Umbilicus rupestris (wall pennywort) by comparingcontrol (well-watered) and draughted plants with respect to(i) diurnal fluctuations in the acid content of the leaves,(ii) CO2 exchange patterns and (iii) stomatal conductance. Controlplants show no diurnal fluctuations in acid content, whereasafter 6 d of drought a clear CAM-type pattern (nocturnal acidificationfollowed by deacidification in the light) is observed. In controlplants, the CO2 exchange pattern over a 24 h period is of atypical C-3 ‘square-wave’ type, with extensive CO2uptake in the light and CO2 output in the dark. In droughtedplants the day-time CO2 uptake is confined to a morning ‘burst’,whilst night-time CO2 output is markedly reduced. There is howeverno net noctural uptake of CO2. In control plants, stomatal conductanceis high during the day (especially in the first half of theday) falling to a low level at the onset of darkness, and thenrising slowly through the remainder of the night. In droughtedplants, stomatal conductance is very low, except that thereis morning ‘burst’ of high conductance and a periodduring the night when conductance is higher than in controlplants. These results are discussed in relation to the response of U.rupestris to drought both in laboratory and in field conditions. Umbilicus rupestris, wall pennywort, CO2 exchange, Crassulacean acid metabolism, drought, stomatal conductance, water stress  相似文献   

20.
Ibarra-Caballero, J., Villanueva-Verduzco, C., Molina-Galan,J. and Sanchez-de-Jimenez, E. 1988. Proline accumulation asa symptom of drought stress in maize: a tissue differentiationrequirement.—J. exp. Bot. 39: 889–897. Seedlings and callus tissue of maize (Zea mays L.) were testedfor proline accumulation under drought stress. A variety froma tropical humid region, a semi-desertic variety and its improvedpopulation selected for drought stress resistance, were usedfor this study. Proline accumulation was found in green leaves of maize seedlingsunder drought stress; no correlation was found between prolineaccumulation in leaves and the variety or population tested.White tissue, callus and leaves of etiolated seedlings did notshow this response to drought stress, nor did green callus ordetached leaves (green or etiolated), even when stress causeda loss of water from leaves similar to that observed when wholeseedlings were drought-stressed. Addition of abscisic acid togreen or white tissue did not result in proline accumulation.The above data indicate that proline accumulation caused bydrought stress does not seem to be an indication of droughtstress resistance, but rather a symptom of it. For this accumulationto take place it seems that fully organized chloroplasts arerequired as well as the systemic development of the plant. Key words: Proline, maize, drought-stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号