首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant Q10 of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short‐term temperature response and ignore temperature acclimation. We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature‐variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios. The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site. The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.  相似文献   

2.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

3.
Spatial and temporal patterns of growth, erosion, productivity, and morphology of the dominant habitat‐forming kelp Ecklonia radiata (C. Agardh) J. Agardh were studied bimonthly over 1.5 years in a southern New Zealand fjord characterized by strong gradients in light and wave exposure. Spatial differences in growth were observed with rates at two outer coast, high‐light, wave‐exposed sites reaching 0.42 and 0.45 cm · d?1, respectively, compared to 0.27 cm · d?1 at an inner, more homogeneous site. Sporophyte productivity was similar among sites, although population productivity was greater at the outer sites due to population density being 5‐fold greater than at the inner site. It was expected that the inner site would have no pronounced seasonal pattern in growth and productivity due to its homogeneity; however, all three sites displayed maximum rates in late winter/spring and minimal in autumn. Growth rates were 2‐fold greater during the first growth period than the following year. This discrepancy was not correlated to inorganic nitrogen (N) levels, which remained low year‐round (<4 μM), and is likely a result of an interaction between light and temperature, and the photosynthetic capability of E. radiata. Variable pigment content indicated photoacclimation at the inner site. Morphological differences were observed between sites, with E. radiata from the inner site having longer, wider, thinner blades and longer stipes. While E. radiata displayed spatial differences in growth, erosion, productivity, and morphology, populations displayed no temporal differences. These results highlight the need for greater understanding of the mechanisms influencing kelp growth and productivity in a unique marine environment.  相似文献   

4.
Field studies of respiration in stream insects are few in comparison with laboratory studies. To evaluate the influence of temperature and oxygen along altitudinal gradients we measured the respiration rate of fully acclimatized larval Trichoptera, Plecoptera and Ephemeroptera under similar field conditions in streams from 400 to 3800 m above sea level in tropical Ecuador. Mean active respiration rates of the animals at 3800 m were approximately half of those at 400 m. Trichoptera showed a slightly larger difference in respiration with altitude than Ephemeroptera. Comparative respiration measurements at 100 and 50% oxygen saturation indicated that highland animals reduced their oxygen uptake more than their counterparts in the lowland when oxygen availability decreased. The temperature response of respiration calculated between the insect assemblages at different altitudes showed a mean assemblage Q10−value of 1.50. Trichopteran larvae had a slightly stronger temperature response (Q10 of 1.68) than ephemeropterans (Q10 of 1.30). These community Q10-values are considerably lower than the mean value of 2.36 found in single species in the laboratory. The weak community-wide response of respiration to temperature in tropical streams is probably due to full acclimatization of the component species to stable and narrow temperature ranges. Adaptations to the low oxygen availability at high altitude probably consist of a suite of genetic physiological and behavioural features.  相似文献   

5.
The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high‐ and low‐nitrogen (N) availability, to investigate the acclimation potential of respiration and photosynthesis to temperature change. Measurements of respiratory and photosynthetic rates were made at five temperatures (7°C–33°C). An instantaneous change in temperature resulted in a change in the rates of respiration and photosynthesis, and the temperature sensitivities (i.e., the Q10 value) for both the metabolic processes were lower in 26°C‐grown algae than 12°C‐ or 19°C‐grown algae. Both respiration and photosynthesis acclimated to long‐term changes in temperature, irrespective of the N availability under which the algae were grown; respiration displayed strong acclimation, whereas photosynthesis only exhibited a partial acclimation response to changing growth temperatures. The ratio of respiration to gross photosynthesis was higher in 12°C‐grown algae, but displayed little difference between the algae grown at 19°C and 26°C. We propose that it is unlikely that respiration in G. lemaneiformis would increase significantly with global warming, although photosynthesis would increase at moderately elevated temperatures.  相似文献   

6.
Interactions between photosynthetic substrate supply and temperature in determining the rate of three respiration components (leaf, belowground and ecosystem respiration) were investigated within three environmentally controlled, Populus deltoides forest bays at Biosphere 2, Arizona. Over 2 months, the atmospheric CO2 concentration and air temperature were manipulated to test the following hypotheses: (1) the responses of the three respiration components to changes in the rate of photosynthesis would differ both in speed and magnitude; (2) the temperature sensitivity of leaf and belowground respiration would increase in response to a rise in substrate availability; and, (3) at the ecosystem level, the ratio of respiration to photosynthesis would be conserved despite week‐to‐week changes in temperature. All three respiration rates responded to the CO2 concentration‐induced changes in photosynthesis. However, the proportional change in the rate of leaf respiration was more than twice that of belowground respiration and, when photosynthesis was reduced, was also more rapid. The results suggest that aboveground respiration plays a key role in the overall response of ecosystem respiration to short‐term changes in canopy photosynthesis. The short‐term temperature sensitivity of leaf respiration, measured within a single night, was found to be affected more by developmental conditions than photosynthetic substrate availability, as the Q10 was lower in leaves that developed at high CO2, irrespective of substrate availability. However, the temperature sensitivity of belowground respiration, calculated between periods of differing air temperature, appeared to be positively correlated with photosynthetic substrate availability. At the ecosystem level, respiration and photosynthesis were positively correlated but the relationship was affected by temperature; for a given rate of daytime photosynthesis, the rate of respiration the following night was greater at 25 than 20°C. This result suggests that net ecosystem exchange did not acclimate to temperature changes lasting up to 3 weeks. Overall, the results of this study demonstrate that the three respiration terms differ in their dependence on photosynthesis and that, short‐ and medium‐term changes in temperature may affect net carbon storage in terrestrial ecosystems.  相似文献   

7.
8.
全球陆地生态系统光合作用与呼吸作用的温度敏感性   总被引:3,自引:0,他引:3  
游桂莹  张志渊  张仁铎 《生态学报》2018,38(23):8392-8399
基于全球647套通量数据,定量分析了全球尺度下生态系统光合作用和呼吸作用的温度敏感性(Q10)随纬度、气候和植被的分布规律。结果表明:在全球尺度下,光合作用和呼吸过程的温度敏感性(Q10,G和Q10,R)都随纬度的升高而增加,其中Q10,G和Q10,R的均值分别为3.99±0.21和2.28±0.074。除热带多树草原、常绿落叶林外,Q10,G均大于Q10,R值。不同植被类型的温度敏感性存在显著性差异,表现为:针叶林阔叶林;落叶林常绿林,其中生态系统的季节性变异是造成差异的主要原因。当植被类型和纬度区域共同影响Q10值时,植被类型对Q10值的总变异贡献更大。气候类型对Q10,G和Q10,R都有显著影响。在气候带上,干旱带的Q10,G最小,而冷温带的Q10,G最高。不同气候类型下(除温带草原气候外)的Q10,G都大于Q10,R。在极端条件下,温度可能不在是主导因素,而水分对温度敏感性的影响不可忽略,今后的研究需要更多的关注生态系统温度敏感性对水分变化的响应。  相似文献   

9.
We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub‐Arctic conditions from 78 ºN to 64 ºN. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice‐free periods and higher water temperature. The depth limit of 10% kelp cover was 9–14 m at the northernmost sites (77–78 ºN) with only 94–133 ice‐free days per year, but extended to depths of 21–33 m further south (73 ºN–64 ºN) where >160 days per year were ice‐free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open‐water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 ºN), inter‐annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open‐water period increases. As kelps increase carbon‐flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem.  相似文献   

10.
Abstract. Ecklonia radiata (C. Agardh) J. Agardh kelp beds — a characteristic feature of the nearshore environment along the south‐west Australian coastline — contribute significantly to the coastal biodiversity in temperate Australia, yet, little is known about the organization of these macroalgal assemblages. By compiling existing and new data sets from habitat surveys, we have characterized and compared the structure of kelp‐associated macroalgal assemblages in three regions (Marmion Lagoon, Hamelin Bay and the marine environment neighbouring the Fitzgerald River National Park) across more than 1000 kilometres of the south‐west Australian coastline. 152 macroalgal taxa had been recognized within the three regions and this is in the range of species richness reported from other Australian and African kelp beds. The kelp‐associated algal assemblages were regionally distinct, 66% of all taxa were only found in one region and only 17 taxa were found in all three regions. Adjacent regions shared an additional 13–15 taxa. The regional shifts in assemblage structure were evident in species composition of both canopy and understorey. The organization of assemblages followed a spatial hierarchy where differences in assemblage structure were larger among regions (hundreds of kilometres apart) than among sites within regions (kilometres apart) and differences among sites within region were larger than differences among quadrats within sites (metres apart). Despite this hierarchy each level of nesting contributed approximately the same to total variation in assemblage structure and these spatial patterns were stronger than temporal differences from seasons to 2–3 years. Our results suggest that local and small‐scale processes contribute considerably to heterogeneity in macroalgal assemblages throughout south‐western Australia, and, in particular, our results are consistent with E. radiata exerting a strong influence on macroalgal assemblage structure. Further, our study contradicts the existence of a general south‐west Australian kelp assemblage, although a few species may form the core of E. radiata associations across regions.  相似文献   

11.
Continuous half‐hourly net CO2 exchange measurements were made using nine automatic chambers in a treed fen in northern Alberta, Canada from June–October in 2005 and from May–October in 2006. The 2006 growing season was warmer and drier than in 2005. The average chamber respiration rates normalized to 10 °C were much higher in 2006 than in 2005, while calculations of the temperature sensitivity (Q10) values were similar in the two years. Daytime average respiration values were lower than the corresponding, temperature‐corrected respiration rates calculated from night‐time chamber measurements. From June to September, the season‐integrated estimates of chamber photosynthesis and respiration were 384 and 590 g C m?2, respectively in 2006, an increase of 100 and 203 g C m?2 over the corresponding values in 2005. The season‐integrated photosynthesis and respiration rates obtained using the eddy covariance technique, which included trees and a tall shrub not present in the chambers, were 720 and 513 g C m?2, respectively, in 2006, an increase of 50 and 125 g C m?2 over the corresponding values in 2005. While both photosynthesis and respiration rates were higher in the warmer and drier conditions of 2006, the increase in respiration was more than twice the increase in photosynthesis.  相似文献   

12.
The net ecosystem exchange (NEE) of forests represents the balance of gross primary productivity (GPP) and respiration (R). Methods to estimate these two components from eddy covariance flux measurements are usually based on a functional relationship between respiration and temperature that is calibrated for night‐time (respiration) fluxes and subsequently extrapolated using daytime temperature measurements. However, respiration fluxes originate from different parts of the ecosystem, each of which experiences its own course of temperature. Moreover, if the temperature–respiration function is fitted to combined data from different stages of biological development or seasons, a spurious temperature effect may be included that will lead to overestimation of the direct effect of temperature and therefore to overestimates of daytime respiration. We used the EUROFLUX eddy covariance data set for 15 European forests and pooled data per site, month and for conditions of low and sufficient soil moisture, respectively. We found that using air temperature (measured above the canopy) rather than soil temperature (measured 5 cm below the surface) yielded the most reliable and consistent exponential (Q10) temperature–respiration relationship. A fundamental difference in air temperature‐based Q10 values for different sites, times of year or soil moisture conditions could not be established; all were in the range 1.6–2.5. However, base respiration (R0, i.e. respiration rate scaled to 0°C) did vary significantly among sites and over the course of the year, with increased base respiration rates during the growing season. We used the overall mean Q10 of 2.0 to estimate annual GPP and R. Testing suggested that the uncertainty in total GPP and R associated with the method of separation was generally well within 15%. For the sites investigated, we found a positive relationship between GPP and R, indicating that there is a latitudinal trend in NEE because the absolute decrease in GPP towards the pole is greater than in R.  相似文献   

13.
The future of the land carbon sink is a significant uncertainty in global change projections. Here, key controls on global terrestrial carbon storage are examined using a simple model of vegetation and soil. Equilibrium solutions are derived as a function of atmospheric CO2 and global temperature, these environmental variables are then linked in an idealized global change trajectory, and the lag between the dynamic and equilibrium solutions is derived for different linear rates of increase in atmospheric CO2. Terrestrial carbon storage is departing significantly from equilibrium because CO2 and temperature are increasing on a similar timescale to ecosystem change, and the lag is found to be proportional to the rate of forcing. Thus peak sizes of the land carbon sink, and any future land carbon source, are proportional to the rate of increase of CO2. A switch from a land carbon sink to a source occurs at a higher CO2 and temperature under more rapid forcing. The effects of parameter uncertainty in temperature sensitivities of photosynthesis, plant respiration and soil respiration, and structural uncertainty through the effect of fixing the ratio of plant respiration to photosynthesis are explored. In each case, the CO2 fertilization effect on photosynthesis is constrained to reproduce the 1990 atmospheric CO2 concentration within a closed global model. New literature compilations are presented for the temperature sensitivities of plant and soil respiration. A lower limit, Q10=1.29, for soil respiration significantly increases future land carbon storage. An upper limit, Q10=3.63, for soil respiration underpredicts the increase in carbon storage since the Last Glacial Maximum. Fixing the ratio of plant respiration to photosynthesis (R/P) at 0.5 generates the largest and most persistent land carbon sink, followed by the weakest land carbon source.  相似文献   

14.
1. We examined the detailed temperature dependence (0–40 °C) of bacterial metabolism associated with fine sediment particles from three Danish lowland streams to test if temperature dependence varied between sites, seasons and quality of organic matter and to evaluate possible consequences of global warming. 2. A modified Arrhenius model with reversible denaturation at high temperatures could account for the temperature dependence of bacterial metabolism and the beginning of saturation above 35 °C and it was superior to the unmodified Arrhenius model. Both models overestimated respiration rates at very low temperatures (<5 °C), whereas Ratkowsky's model – the square root of respiration – provided an excellent linear fit between 0 and 30 °C. 3. There were no indications of differences in temperature dependence among samples dominated by slowly or easily degradable organic substrates. Optimum temperature, apparent minimum temperature, Q10‐values for 0–40 °C and activation energies of bacterial respiration were independent of season, stream site and degradability of organic matter. 4. Q10‐values of bacterial respiration declined significantly with temperature (e.g. 3.31 for 5–15 °C and 1.43 for 25–35 °C) and were independent of site and season. Q10‐values of bacterial production behaved similarly, but were significantly lower than Q10‐values of respiration implying that bacterial growth efficiency declined with temperature. 5. A regional warming scenario for 2071–2100 (IPCC A2) predicted that mean annual temperatures will increase by 3.5 °C in the air and 2.2–4.3 °C in the streams compared with the control scenario for 1961–1990. Temperature is expected to rise more in cool groundwater‐fed forest springs than in open, summer‐warm streams. Mean annual bacterial respiration is estimated to increase by 26–63% and production by 18–41% among streams assuming that established metabolism–temperature relationships and organic substrate availability remain the same. To improve predictions of future ecosystem behaviour, we further require coupled models of temperature, hydrology, organic production and decomposition.  相似文献   

15.
We investigated the extent to which leaf and root respiration (R) differ in their response to short‐ and long‐term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long‐term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 °C. In the short‐term (ST) acclimation experiment, 9 of those species were grown at 25/20 °C (day/night) and then shifted to a 15/10 °C for 7 days. Short‐term Q10 values (proportional change in R per 10 °C) and the degree of acclimation to longer‐term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light‐saturated photosynthesis (Asat) was also measured in the LT acclimation experiment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15–25 °C measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter‐specific differences in the Q10 or degree of acclimation. There were no systematic differences in the ability of roots and leaves to acclimate when plants developed under contrasting temperatures (LT acclimation). However, acclimation was greater in both leaves and roots that developed at the growth temperature (LT acclimation) than in pre‐existing leaves and roots shifted from one temperature to another (ST acclimation). The balance between leaf R and Asat was maintained in plants grown at different temperatures, regardless of their inherent relative growth rate. We conclude that there is tight coupling between the respiratory acclimation and the temperature under which leaves and roots developed and that acclimation plays an important role in determining the relationship between respiration and photosynthesis.  相似文献   

16.
The absorption of anthropogenic CO2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non‐calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south‐eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pHT 7.20, extreme OA predicted for 2300; pHT 7.65, OA predicted for 2100; pHT 8.01, ambient pH; and pHT 8.40, pre‐industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pHT (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pHT (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pHT treatments, except for U. pinnatifida at pHT 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pHT treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA.  相似文献   

17.
Many field studies have demonstrated that soil temperature explains most of the temporal variation in soil respiration (SR). However, there is increasing evidence to suggest that SR is also influenced by current, or recent, photosynthate. Accordingly, seasonal changes in SR nominally attributed to temperature may, in part, be due to seasonality in photosynthesis. Within a mixed coniferous–deciduous temperate forest, we measured SR and used the process model SECRETS to test whether seasonal changes in photosynthesis influence seasonal differences in SR. Measurements were made in six adjacent plots (from pure evergreen to pure deciduous) that exhibited a gradient in the seasonality of photosynthesis. Within all six plots, we found strong correlations between the basal rate of SR (BR; defined as the SR at 10°C) and modeled photosynthesis (i.e. gross primary productivity; GPP). Moreover, we observed larger seasonal changes in BR in those plots that exhibited larger seasonal changes in photosynthesis, as compared with plots with smaller changes in photosynthesis. This is relevant because estimates of the Q10 of SR (Q10 is the relative change in a process rate per temperature change of 10°C) typically assume a constant BR. Our results therefore support the hypothesis that differences in the apparent Q10 of SR (apparent Q10=Q10 derived from field measurements of SR and temperature) among studies may, in large part, be related to seasonal differences in photosynthesis. We suggest that variation in stand structure and species composition and, thus, in the photosynthetic signatures, induce different seasonal changes in BR via differences in the belowground supply of labile carbon. If these seasonal changes in BR are not properly accounted for, fitted apparent Q10 values may not express the temperature response of respiratory processes in the soil.  相似文献   

18.
Thermal acclimation of photosynthesis and respiration can enable plants to maintain near constant rates of net CO2 exchange, despite experiencing sustained changes in daily average temperature. In this study, we investigated whether the degree of acclimation of photosynthesis and respiration of mature leaves differs among three congeneric Plantago species from contrasting habitats [two fast‐growing lowland species (Plantago major and P. lanceolata), and one slow‐growing alpine species (P. euryphylla)]. In addition to investigating some mechanisms underpinning variability in photosynthetic acclimation, we also determined whether leaf respiration in the light acclimates to the same extent as leaf respiration in darkness, and whether acclimation reestablishes the balance between leaf respiration and photosynthesis. Three growth temperatures were provided: constant 13, 20, or 27°C. Measurements were made at five temperatures (6–34°C). Little acclimation of photosynthesis and leaf respiration to growth temperature was exhibited by P. euryphylla. Moreover, leaf masses per area (LMA) were similar in 13°C‐grown and 20°C‐grown plants of the alpine species. In contrast, growth at 13°C increased LMA in the two lowland species; this was associated with increased photosynthetic capacity and rates of leaf respiration (both in darkness and in the light). Alleviation of triose phosphate limitation and increased capacity of electron transport capacity relative to carboxylation were also observed. Such changes demonstrate that the lowland species cold‐acclimated. Light reduced the short‐term temperature dependence (i.e. Q10) of leaf respiration in all three species, irrespective of growth temperature. Collectively, our results highlight the tight coupling that exists between thermal acclimation of photosynthetic and leaf respiratory metabolism (both in darkness and in the light) in Plantago. If widespread among contrasting species, such coupling may enable modellers to assume levels of acclimation in one parameter (e.g. leaf respiration) where details are only known for the other (e.g. photosynthesis).  相似文献   

19.
Large seasonal changes in Q10 of soil respiration in a beech forest   总被引:1,自引:0,他引:1  
We analyzed one year of continuous soil respiration measurements to assess variations in the temperature sensitivity of soil respiration at a Danish beech forest. A single temperature function derived from all measurements across the year (Q10 = 4.2) was adequate for estimating the total annual soil respiration and its seasonal evolution. However, Q10's derived from weekly datasets ranged between three in summer (at a mean soil temperature of 14 °C) and 23 in winter (at 2 °C), indicating that the annual temperature function underestimated the synoptic variations in soil respiration during winter. These results highlight that empirical models should be parameterized at a time resolution similar to that required by the output of the model. If the objective of the model is to simulate the total annual soil respiration rate, annual parameterization suffices. If however, soil respiration needs to be simulated over time periods from days to weeks, as is the case when soil respiration is compared to total ecosystem respiration during synoptic weather patterns, more short‐term parameterization is required. Despite the higher wintertime Q10's, the absolute response of soil respiration to temperature was smaller in winter than in summer. This is mainly because in absolute numbers, the temperature sensitivity of soil respiration depends not only on Q10, but also on the rate of soil respiration, which is highly reduced in winter. Nonetheless, the Q10 of soil respiration in winter was larger than can be explained by the decreasing respiration rate only. Because the seasonal changes in Q10 were negatively correlated with temperature and positively correlated with soil moisture, they could also be related to changing temperature and/or soil moisture conditions.  相似文献   

20.
The short‐term and long‐term effects of elevated CO2 on photosynthesis and respiration were examined in cultures of the marine brown macroalga Hizikia fusiformis (Harv.) Okamura grown under ambient (375 μL · L?1) and elevated (700 μL · L?1) CO2 concentrations and at low and high N availability. Short‐term exposure to CO2 enrichment stimulated photosynthesis, and this stimulation was maintained with prolonged growth at elevated CO2, regardless of the N levels in culture, indicating no down‐regulation of photosynthesis with prolonged growth at elevated CO2. However, the photosynthetic rate of low‐N‐grown H. fusiformis was more responsive to CO2 enrichment than that of high‐N‐grown algae. Elevation of CO2 concentration increased the value of K1/2(Ci) (the half‐saturation constant) for photosynthesis, whereas high N supply lowered it. Neither short‐term nor long‐term CO2 enrichment had inhibitory effects on respiration rate, irrespective of the N supply, under which the algae were grown. Under high‐N growth, the Q10 value of respiration was higher in the elevated‐CO2‐grown algae than the ambient‐CO2‐grown algae. Either short‐ or long‐term exposure to CO2 enrichment decreased respiration as a proportion of gross photosynthesis (Pg) in low‐N‐grown H. fusiformis. It was proposed that in a future world of higher atmospheric CO2 concentration and simultaneous coastal eutrophication, the respiratory carbon flux would be more sensitive to changing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号